A241292 Decimal expansion of 3^(3^(3^3)) = 3^^4.
1, 2, 5, 8, 0, 1, 4, 2, 9, 0, 6, 2, 7, 4, 9, 1, 3, 1, 7, 8, 6, 0, 3, 9, 0, 6, 9, 8, 2, 0, 3, 2, 8, 1, 2, 1, 5, 5, 1, 8, 0, 4, 6, 7, 1, 4, 3, 1, 6, 5, 9, 6, 0, 1, 5, 1, 8, 9, 6, 7, 4, 9, 4, 4, 3, 8, 1, 2, 1, 1, 0, 1, 1, 3, 0, 0, 0, 1, 7, 7, 8, 5, 3, 1, 0, 8, 0, 3, 9, 0, 3, 2, 9, 6, 2, 4, 0, 1, 1, 5, 6, 9, 5, 8, 5
Offset: 3638334640025
Examples
=1258014290627491317860390698203281215518046714316596015189674944381211011300017785310803903296240115...(3638334639825)...5344828628021555146929939999502212249640012905650177570718344711077047886315075206738945776100739387. The above example line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis. The final one hundred digits where computed by: PowerMod[3, 3^3^3, 10^100].
Links
- Robert P. Munafo, Hyper4 Iterated Exponential Function..
Crossrefs
Programs
-
Mathematica
nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 3, 3^3^3] (* or *) p = 3; f[n_] := Quotient[n^p, 10^(Floor[p * Log10@ n] - (1004 + p^p))]; IntegerDigits@ Quotient[ Nest[ f@ # &, p, p^p], 10^(900 + p^p)]
-
PARI
3.^3^3^3 \\ Charles R Greathouse IV, Apr 25 2016
Formula
= 3^(3^(3^3)) = ((((( ... 16 ... (((((3^3)^3)^3)^3)^3) ... 16 ... ^3)^3)^3)^3)^3)^3.
Extensions
Keyword: fini added by Jianing Song, Sep 18 2019
Comments