cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241292 Decimal expansion of 3^(3^(3^3)) = 3^^4.

Original entry on oeis.org

1, 2, 5, 8, 0, 1, 4, 2, 9, 0, 6, 2, 7, 4, 9, 1, 3, 1, 7, 8, 6, 0, 3, 9, 0, 6, 9, 8, 2, 0, 3, 2, 8, 1, 2, 1, 5, 5, 1, 8, 0, 4, 6, 7, 1, 4, 3, 1, 6, 5, 9, 6, 0, 1, 5, 1, 8, 9, 6, 7, 4, 9, 4, 4, 3, 8, 1, 2, 1, 1, 0, 1, 1, 3, 0, 0, 0, 1, 7, 7, 8, 5, 3, 1, 0, 8, 0, 3, 9, 0, 3, 2, 9, 6, 2, 4, 0, 1, 1, 5, 6, 9, 5, 8, 5
Offset: 3638334640025

Views

Author

Keywords

Comments

Decimal expansion of 3^7625597484987. - Jianing Song, Sep 15 2019

Examples

			=1258014290627491317860390698203281215518046714316596015189674944381211011300017785310803903296240115...(3638334639825)...5344828628021555146929939999502212249640012905650177570718344711077047886315075206738945776100739387.
The above example line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis.
The final one hundred digits where computed by: PowerMod[3, 3^3^3, 10^100].
		

Crossrefs

Programs

  • Mathematica
    nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 3, 3^3^3] (* or *)
    p = 3; f[n_] := Quotient[n^p, 10^(Floor[p * Log10@ n] - (1004 + p^p))]; IntegerDigits@ Quotient[ Nest[ f@ # &, p, p^p], 10^(900 + p^p)]
  • PARI
    3.^3^3^3 \\ Charles R Greathouse IV, Apr 25 2016

Formula

= 3^(3^(3^3)) = ((((( ... 16 ... (((((3^3)^3)^3)^3)^3) ... 16 ... ^3)^3)^3)^3)^3)^3.

Extensions

Keyword: fini added by Jianing Song, Sep 18 2019