A241293 Decimal expansion of 4^(4^(4^4)) = 4^^4.
2, 3, 6, 1, 0, 2, 2, 6, 7, 1, 4, 5, 9, 7, 3, 1, 3, 2, 0, 6, 8, 7, 7, 0, 2, 7, 4, 9, 7, 7, 8, 1, 7, 9, 4, 3, 0, 9, 4, 6, 1, 2, 7, 2, 9, 1, 4, 7, 7, 5, 1, 5, 4, 4, 6, 7, 1, 9, 2, 5, 6, 9, 4, 6, 2, 1, 2, 7, 1, 1, 8, 5, 3, 6, 6, 6, 4, 7, 5, 5, 2, 4, 9, 4, 5, 7, 6, 9, 3, 5, 0, 1, 0, 1, 9, 4, 1, 9, 9, 7, 7, 1, 6, 1, 6
Offset: 1
Examples
2361022671459731320687702749778179430946127291477515446719256946212711853666475524945769350101941997...(8.072304726...*10^153) ... 7470426497333490366540651560537534642789067586985427238232605843019607448189676936860456095261392896. The above line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis. The final one hundred digits where computed by: PowerMod[4, 4^4^4, 10^100].
Links
- Robert P. Munafo, Hyper4 Iterated Exponential Function..
Crossrefs
Programs
-
Mathematica
nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 4, 4^4^4] (* or *) p = 4; f[n_] := Quotient[n^p, 10^(Floor[p * Log10@ n] - (1004 + p^p))]; IntegerDigits@ Quotient[ Nest[ f@ # &, p, p^p], 10^(900 + p^p)] (* Program fixed by Jianing Song, Sep 18 2019 *)
Formula
4^(4^(4^4)) = ((((( ... 245 ... (((((4^4)^4)^4)^4)^4) ... 245 ... ^4)^4)^4)^4)^4)^4.
Extensions
Keyword: fini added by Jianing Song, Sep 18 2019
Comments