A241294 Decimal expansion of 5^(5^(5^5)) = 5^^4.
1, 1, 1, 1, 0, 2, 8, 8, 0, 8, 1, 7, 9, 9, 9, 7, 4, 4, 5, 2, 8, 6, 1, 7, 8, 2, 7, 4, 1, 8, 6, 0, 5, 7, 5, 4, 5, 1, 6, 7, 3, 4, 6, 5, 2, 0, 5, 9, 6, 2, 7, 2, 1, 5, 4, 7, 3, 3, 3, 8, 6, 7, 4, 5, 2, 2, 5, 1, 9, 6, 5, 5, 4, 8, 3, 3, 7, 4, 0, 1, 8, 4, 7, 3, 5, 2, 0, 9, 9, 4, 0, 1, 8, 1, 1, 0, 5, 7, 3, 6, 4, 3, 5, 0, 9
Offset: 1
Examples
1111028808179997445286178274186057545167346520596272154733386745225196554833740184735209940181105736...(1.335740484... * 10^2184)...3293393812245587348839009777160541868907233602002347435809721798438687301313620992004871368408203125. The above line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis. The final one hundred digits where computed by: PowerMod[5, 5^5^5, 10^100].
Links
- Robert P. Munafo, Hyper4 Iterated Exponential Function..
Crossrefs
Programs
-
Mathematica
nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 5, 5^5^5] (* or *) p = 5; f[n_] := Quotient[n^p, 10^(Floor[p * Log10@ n] - (1004 + p^p))]; IntegerDigits@ Quotient[ Nest[ f@ # &, p, p^p], 10^(900 + p^p)]
Formula
5^(5^(5^5)) = ((((( ... 3114 ... (((((5^5)^5)^5)^5)^5) ... 3114 ... ^5)^5)^5)^5)^5)^5.
Extensions
Keyword: fini added by Jianing Song, Sep 18 2019
Comments