cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A241392 Number of nX2 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 5, 13, 28, 64, 142, 318, 726, 1634, 3695, 8363, 18904, 42787, 96771, 218940, 495514, 1121224, 2537388, 5742666, 12996786, 29415660, 66576728, 150686121, 341060866, 771951453, 1747237409, 3954724092, 8951198975, 20260385570, 45857968649
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 2 of A241397

Examples

			Some solutions for n=4
..3..2....2..3....3..2....2..3....2..3....2..3....3..2....2..3....3..2....2..3
..1..0....2..3....1..2....1..3....1..3....1..3....1..0....1..3....1..0....1..3
..2..0....3..0....2..0....2..0....1..0....3..2....3..0....3..2....3..0....3..0
..2..0....2..0....2..3....3..0....2..0....1..2....3..2....2..0....3..0....2..0
		

Formula

Empirical: a(n) = 3*a(n-2) +10*a(n-3) +3*a(n-4) -12*a(n-5) -46*a(n-6) -36*a(n-7) +12*a(n-8) +107*a(n-9) +87*a(n-10) +2*a(n-11) -145*a(n-12) -138*a(n-13) -48*a(n-14) +147*a(n-15) +185*a(n-16) +89*a(n-17) -94*a(n-18) -210*a(n-19) -111*a(n-20) +40*a(n-21) +176*a(n-22) +85*a(n-23) +30*a(n-24) -77*a(n-25) -47*a(n-26) -57*a(n-27) +14*a(n-29) +21*a(n-30) +14*a(n-31) -3*a(n-32) +2*a(n-33) -5*a(n-34) +a(n-35) +2*a(n-36) +a(n-37) -a(n-38)

A241393 Number of nX3 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 9, 29, 97, 340, 1156, 4068, 14763, 52950, 190950, 687442, 2476661, 8922447, 32121858, 115744464, 416837976, 1501406960, 5406257970, 19472791326, 70130249296, 252570497669, 909559808019, 3275792914936, 11797588596607
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 3 of A241397

Examples

			Some solutions for n=4
..2..3..2....3..2..2....3..2..2....2..3..3....3..2..2....2..3..3....3..2..2
..2..1..0....1..2..0....2..1..0....2..3..2....1..2..0....2..3..2....1..2..0
..2..3..2....3..0..0....1..3..2....2..0..0....2..3..0....2..1..0....3..0..0
..2..1..2....2..0..0....1..0..3....2..0..0....1..3..2....2..3..0....3..2..2
		

A241394 Number of n X 4 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

6, 23, 85, 480, 2780, 17211, 102782, 645484, 3936420, 24633252, 150911826, 941907715, 5783836527, 36025719987, 221566632164, 1377925800191, 8486654284672, 52714390850462, 324976079474744, 2016735929148039, 12443708121368662, 77167572875652387, 476406669588897579
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Examples

			Some solutions for n=4:
..2..3..3..3....3..2..2..2....2..3..3..2....2..3..3..2....2..3..3..2
..1..3..1..2....1..2..0..0....1..3..2..0....2..1..2..2....1..3..2..0
..1..0..0..3....3..0..0..0....1..0..0..0....3..0..1..2....1..2..0..2
..3..2..2..2....1..2..2..0....3..2..0..2....3..2..0..2....2..3..0..3
		

Crossrefs

Column 4 of A241397.

A241398 Number of 2Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

3, 5, 9, 23, 44, 93, 204, 368, 761, 1583, 2951, 6056, 12244, 23588, 47945, 95715, 187731, 378531, 752679, 1489014, 2986657, 5934705, 11787915, 23567455, 46847503, 93218990, 186017656, 369978815, 736728537, 1468604461, 2922396725, 5820645191
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Row 2 of A241397

Examples

			Some solutions for n=4
..3..2..2..2....2..3..2..2....3..2..3..2....2..3..3..2....3..2..3..3
..2..0..1..0....2..1..0..0....2..1..1..2....2..1..1..2....1..2..1..2
		

Formula

Empirical: a(n) = 2*a(n-2) +8*a(n-3) -a(n-4) -10*a(n-5) -18*a(n-6) +8*a(n-7) +20*a(n-8) +20*a(n-9) -24*a(n-10) -22*a(n-11) -a(n-12) +32*a(n-13) +8*a(n-14) -3*a(n-15) -12*a(n-16) +4*a(n-17) -5*a(n-18) -4*a(n-20) -3*a(n-21) +2*a(n-22) for n>23

A241399 Number of 3Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

4, 13, 29, 85, 201, 689, 1929, 4068, 11963, 33651, 80035, 231111, 606571, 1542322, 4407947, 11308092, 29789742, 82990169, 213582987, 572318731, 1556503937, 4056412623, 10923983311, 29272912317, 77140259839, 207516834784
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Row 3 of A241397

Examples

			Some solutions for n=4
..2..3..2..2....3..2..2..2....3..2..3..3....2..3..3..2....2..3..3..3
..2..1..2..0....1..0..0..0....1..2..1..2....2..1..2..2....2..3..2..2
..3..0..0..0....2..0..0..0....3..2..0..0....2..0..0..0....2..1..0..0
		

A241400 Number of 4Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

7, 28, 97, 480, 1657, 8697, 31654, 92204, 397955, 1440202, 5015494, 20114505, 70074714, 258768285, 999131434, 3471187281, 13084431710, 49495338616, 176036491899, 662243630484, 2450968267032, 8911921597230, 33375847400152
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Row 4 of A241397

Examples

			Some solutions for n=4
..2..3..3..2....2..3..3..2....2..3..3..3....3..2..2..2....3..2..2..2
..1..3..1..2....1..3..1..2....1..3..1..2....1..2..0..0....1..2..0..0
..1..2..2..2....1..2..0..2....2..0..0..3....2..0..0..0....3..0..0..0
..3..0..0..2....3..2..2..2....3..0..2..2....2..3..0..2....1..2..0..0
		

A241395 Number of nX5 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

8, 44, 201, 1657, 15339, 160947, 1622867, 18627122, 196990531, 2356216195, 25594964973, 309860295135, 3406115792732, 41329346536802, 457205784409075, 5541954581513250, 61567408955078580, 744650178324042533
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 5 of A241397

Examples

			Some solutions for n=4
..3..2..2..2..3....2..3..3..3..2....3..2..3..3..2....2..3..2..2..2
..1..2..1..1..3....2..1..1..1..0....1..2..1..1..2....2..1..2..0..0
..3..2..3..1..2....2..3..2..2..2....3..0..2..2..2....3..0..2..2..0
..3..2..2..2..2....2..3..2..0..0....3..0..0..1..2....3..2..0..3..2
		

A241396 Number of nX6 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

14, 93, 689, 8697, 129985, 2234804, 39781828, 821631365, 16108803423, 370391699130
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Column 6 of A241397

Examples

			Some solutions for n=4
..3..2..3..2..3..3....3..2..2..2..3..2....3..2..2..2..3..2....3..2..2..2..3..3
..1..2..1..2..1..2....1..2..0..1..1..0....1..2..0..1..1..0....1..2..0..1..1..2
..3..2..3..2..0..0....2..0..0..3..0..2....3..0..2..3..2..0....3..2..0..3..2..0
..3..0..1..1..2..0....1..0..0..2..2..0....1..0..2..1..2..0....2..0..1..0..0..0
		

A241401 Number of 5Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

10, 64, 340, 2780, 15339, 129985, 667050, 2949778, 18902401, 91648139, 516486984, 3075569596, 15073466440, 85957361897, 473425616837, 2340472941060, 13328226383734, 73626242006464, 386042800402280, 2155794635092538
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Row 5 of A241397

Examples

			Some solutions for n=3
..2..3..3....3..2..2....2..3..3....3..2..2....3..2..2....3..2..2....3..2..2
..2..1..2....1..2..0....2..3..2....1..2..0....2..1..0....1..2..0....1..2..0
..2..0..0....2..3..0....2..0..0....3..0..2....1..3..2....3..2..0....2..3..0
..2..3..3....2..3..2....2..0..3....3..2..2....1..0..0....1..0..0....1..3..2
..2..3..3....2..0..3....2..1..0....2..0..0....1..2..2....3..2..0....3..2..0
		

A241402 Number of 6Xn 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

15, 142, 1156, 17211, 160947, 2234804, 18589398, 134190457, 1305599583, 8782028493, 85981849830
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Row 6 of A241397

Examples

			Some solutions for n=3
..2..3..2....3..2..2....2..3..3....2..3..3....2..3..3....3..2..2....3..2..2
..2..1..0....1..2..0....1..3..2....2..1..2....2..3..2....1..2..0....2..1..0
..3..0..0....3..2..2....1..2..0....2..0..0....2..0..0....3..2..2....1..3..2
..3..0..0....1..2..2....3..0..0....2..0..0....1..0..0....1..2..0....1..2..0
..2..0..0....3..2..0....3..2..0....2..3..3....2..0..0....2..0..0....2..3..2
..2..3..0....3..0..0....1..0..3....2..3..0....3..0..0....2..3..3....3..1..2
		
Showing 1-10 of 10 results.