A241415 Number of partitions p of n such that the number of numbers having multiplicity 1 in p is not a part and the number of numbers having multiplicity > 1 is a part.
0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 7, 9, 16, 18, 31, 37, 56, 66, 92, 110, 153, 174, 231, 275, 357, 423, 542, 642, 825, 990, 1228, 1483, 1869, 2221, 2757, 3325, 4055, 4853, 5926, 7033, 8519, 10128, 12110, 14353, 17142, 20168, 23938, 28215, 33243, 39019, 45968
Offset: 0
Examples
a(6) counts these 2 partitions: 2211, 111111.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == &]]]; e[q_] := Length[DeleteDuplicates[Select[q, Count[q, #] > 1 &]]] Table[Count[f[n], p_ /; MemberQ[p, u[p]]], {n, 0, z}] (* A241413 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] && MemberQ[p, e[p]]], {n, 0, z}] (* A241414 *) Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && MemberQ[p, e[p]] ], {n, 0, z}] (* A241415 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241416 *) Table[Count[f[n], p_ /; ! MemberQ[p, u[p]] && ! MemberQ[p, e[p]] ], {n, 0, z}] (* A241417 *) Table[Count[f[n], p_ /; MemberQ[p, u[p]] || MemberQ[p, e[p]] ], {n, 0, z}] (* A239737 *)