A241477 Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n.
1, 0, 2, 2, 2, 2, 0, 4, 0, 2, 6, 12, 4, 2, 6, 0, 12, 0, 4, 0, 4, 20, 60, 12, 12, 12, 4, 20, 0, 40, 0, 12, 0, 8, 0, 10, 70, 280, 40, 60, 36, 24, 40, 10, 70, 0, 140, 0, 40, 0, 24, 0, 20, 0, 28, 252, 1260, 140, 280, 120, 120, 120, 60, 140, 28, 252, 0, 504, 0
Offset: 1
Examples
[1], [ 1] [2], [ 0, 2] [3], [ 2, 2, 2] [4], [ 0, 4, 0, 2] [5], [ 6, 12, 4, 2, 6] [6], [ 0, 12, 0, 4, 0, 4] [7], [20, 60, 12, 12, 12, 4, 20]
Programs
-
Maple
A241477 := proc(n, k) if n = 0 then 1 elif k = 0 then 0 elif irem(n, 2) = 0 and irem(k, 2) = 1 then 0 elif k = 1 then (n-1)!/iquo(n-1,2)!^2 else 2*(n-k)!*(k-2)!/iquo(k,2)/(iquo(k-2,2)!*iquo(n-k,2)!)^2 fi end: for n from 1 to 9 do seq(A241477(n, k), k=1..n) od;
-
Mathematica
T[n_, k_] := Which[n == 0, 1, k == 0, 0, Mod[n, 2] == 0 && Mod[k, 2] == 1, 0, k == 1, (n-1)!/Quotient[n-1, 2]!^2, True, 2*(n-k)!*(k-2)!/Quotient[k, 2]/(Quotient[k-2, 2]!*Quotient[n-k, 2]!)^2]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, from Maple *)
-
Sage
def A241477_row(n): if n == 0: return [1] Z = [0]*n; T = [0] if is_odd(n) else [] for i in (1..n//2): T.append(-1); T.append(1) for p in Permutations(T): i = 0; s = p[0] while s != 0: i += 1; s += p[i]; Z[i] += 1 return Z for n in (1..9): A241477_row(n)
Formula
If n is even and k is odd then T(n, k) = 0 else if k = 1 then T(n, 1) = A056040(n-1) else T(n, k) = 2*A057977(k-2)*A056040(n-k).
T(n, n) = A241543(n).
T(n+1, 1) = A126869(n).
T(2*n, 2*n) = |A002420(n)|.
T(2*n+1, 1) = A000984(n).
T(2*n+1, n+1) = A241530(n).
T(2*n+2, 2) = A028329(n).
T(4*n, 2*n) = |A010370(n)|.
T(4*n, 4*n) = |A024491(n)|.
T(4*n+1, 1) = A001448(n).
T(4*n+1, 2*n+1) = A002894(n).
Comments