cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241485 Primes p such that p+2, p+222 and p+2222 are also prime.

Original entry on oeis.org

17, 29, 59, 71, 281, 461, 827, 1151, 1277, 1289, 1487, 1667, 1877, 1931, 2687, 2789, 2801, 3359, 3557, 3851, 4049, 4229, 4259, 4481, 4649, 5417, 5519, 5657, 5867, 5879, 6089, 6131, 6299, 6359, 6779, 6791, 7127, 7211, 8291, 8837, 9719, 10067, 10937, 13397, 13679
Offset: 1

Views

Author

K. D. Bajpai, Apr 23 2014

Keywords

Comments

All the terms in the sequence are congruent to 2 mod 3.
The constants in the definition (2, 222 and 2222) are the concatenation of digit 2.

Examples

			a(1) = 17 is a prime: 17+2 = 19, 17+222 = 239 and 17+2222 = 2239 are also prime.
a(2) = 29 is a prime: 29+2 = 31, 29+222 = 251 and 29+2222 = 2251 are also prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,d,e; a:= ithprime(n); b:=a+2;d:=a+222;e:=a+2222; if isprime(b)and isprime(d)and isprime(e)  then return (a) :fi; end: seq(KD(), n=1..5000);
  • Mathematica
    KD={}; Do[p=Prime[n];If[PrimeQ[p+2]&&PrimeQ[p+222]&&PrimeQ[p+2222], AppendTo[KD,p]], {n,5000}]; KD
    (*For b-file*) c=0;p=Prime[n];Do[If[PrimeQ[p+2]&&PrimeQ[p+222]&&PrimeQ[p+2222],c=c+1; Print[c,"  ",p]],{n,1,3*10^6}];