A241487 Primes p such that p+6, p+666 and p+6666 are also prime.
7, 53, 67, 157, 191, 311, 331, 347, 353, 373, 443, 563, 571, 641, 821, 823, 857, 941, 1033, 1087, 1123, 1283, 1423, 1607, 1621, 1873, 1997, 2011, 2137, 2333, 2383, 2543, 2657, 2677, 2797, 2957, 3301, 3511, 3607, 3671, 3691, 3797, 3847, 4133, 5113, 5147, 5231
Offset: 1
Keywords
Examples
a(2) = 53 is a prime: 53+6 = 59, 53+666 = 719 and 53+6666 = 6719 are also prime. a(3) = 67 is a prime: 67+6 = 73, 67+666 = 733 and 67+6666 = 6733 are also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD:= proc() local a,b,d,e; a:= ithprime(n); b:=a+2;d:=a+222;e:=a+2222; if isprime(b)and isprime(d)and isprime(e) then return (a) :fi; end: seq(KD(), n=1..5000);
-
Mathematica
KD = {}; Do[p = Prime[n];If[PrimeQ[p + 6] && PrimeQ[p + 666] && PrimeQ[p + 6666],AppendTo[KD, p]], {n, 5000}]; KD (*For the b-file*) c = 0; p = Prime[n]; Do[If[PrimeQ[p + 6] && PrimeQ[p + 666] && PrimeQ[p + 6666], c = c + 1;Print[c, " ", p]], {n, 1, 2*10^6}];
-
PARI
s=[]; forprime(p=2, 6000, if(isprime(p+6) && isprime(p+666) && isprime(p+6666), s=concat(s, p))); s \\ Colin Barker, Apr 25 2014
Comments