A241505 Composite integers k satisfying F_k-(k/5) == 0 (mod k), where F_k is the k-th Fibonacci number and (k/5) is the Kronecker symbol.
25, 60, 120, 125, 180, 240, 300, 323, 360, 377, 480, 540, 600, 625, 660, 720, 840, 900, 960, 1080, 1200, 1320, 1440, 1500, 1620, 1680, 1800, 1860, 1891, 1920, 1980, 2160, 2400, 2460, 2520, 2640, 2700, 2760, 2880, 3000, 3060, 3125, 3240, 3300, 3360, 3420
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arithmetica 60(4) (1992), 371-388.
Programs
-
Mathematica
Select[Range[2, 5000], ! PrimeQ[#] && Mod[Fibonacci[# - JacobiSymbol[#, 5]], #] == 0 &] (* Jean-François Alcover, Apr 24 2014 *)
-
PARI
forcomposite(n=2, 1e4, if(Mod(fibonacci(n-kronecker(n, 5)), n)==0, print1(n, ", ")))
Comments