A241526 Number of different positions in which a square with side length k, 1 <= k <= n - floor(n/3), can be placed within a bi-symmetric triangle of 1 X 1 squares of height n.
2, 7, 16, 31, 53, 83, 123, 174, 237, 314, 406, 514, 640, 785, 950, 1137, 1347, 1581, 1841, 2128, 2443, 2788, 3164, 3572, 4014, 4491, 5004, 5555, 6145, 6775, 7447, 8162, 8921, 9726, 10578, 11478, 12428, 13429, 14482, 15589, 16751, 17969, 19245, 20580, 21975
Offset: 1
Examples
The bi-symmetric triangle of 1 X 1 squares of height 5 is: ___ _|_|_|_ _|_|_|_|_|_ _|_|_|_|_|_|_|_ _|_|_|_|_|_|_|_|_|_ |_|_|_|_|_|_|_|_|_|_| . No. of positions in which a 1 X 1 square can be placed = 2 + 4 + 6 + 8 + 10 = 30. No. of positions in which a 2 X 2 square can be placed = 1 + 3 + 5 + 7 = 16. No. of positions in which a 3 X 3 square can be placed = 2 + 4 = 6. No. of positions in which a 4 X 4 square can be placed = 1. Thus, a(5) = 30 + 16 + 6 + 1 = 53.
Links
- Christopher Hunt Gribble, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).
Crossrefs
Cf. A092498.
Programs
-
Maple
a := proc (n::integer)::integer; (2/9)*n^3+(5/6)*n^2+(17/18)*n-(1/3)*floor((1/3)*n) end proc: seq(a(n), n = 1..60);
-
PARI
Vec(x*(x^2+x+2)/((x-1)^4*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Apr 26 2014
Formula
a(n) = sum_{j=0..n-1-floor(n/3)} ((4*n-6*j+1-(-1)^j)/4)*((4*n-6*j+3+(-1)^j)/4).
a(n) = (4*n^3+15*n^2+17*n-6*floor(n/3))/18.
G.f.: x*(x^2+x+2) / ((x-1)^4*(x^2+x+1)). - Colin Barker, Apr 26 2014