cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241530 a(n) = binomial(n,floor(n/2))*binomial(n+1,floor(n/2+1/2))*(1+floor(n/2))/(1+2*floor(n/2)).

Original entry on oeis.org

1, 2, 4, 12, 36, 120, 400, 1400, 4900, 17640, 63504, 232848, 853776, 3171168, 11778624, 44169840, 165636900, 625739400, 2363904400, 8982836720, 34134779536, 130332794592, 497634306624, 1907598175392, 7312459672336, 28124844893600, 108172480360000
Offset: 0

Views

Author

Peter Luschny, Apr 25 2014

Keywords

Crossrefs

Row n=3 of A275784.

Programs

  • Maple
    A241530 := n -> binomial(n,iquo(n,2))*binomial(n+1,iquo(n+1,2))
    *(1+iquo(n,2))/(1+2*iquo(n,2)); seq(A241530(n), n=0..26);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 2^n,
         ((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 10 2016
  • Mathematica
    CoefficientList[Series[(-EllipticE[16 x^2] + (1 + 4 x) EllipticK[16 x^2])/(2Pi x), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
    Table[Binomial[n, #] Binomial[n + 1, Floor[(n + 1)/2]] (1 + #)/(1 + 2 #) &@ Floor[n/2], {n, 0, 26}] (* Michael De Vlieger, Aug 15 2016 *)

Formula

a(n) = ((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)) for n>=2, a(n) = 2^n for n<2. - Alois P. Heinz, Apr 25 2014
G.f.: ((1+4*x)*K(4*x) - E(4*x))/(2*Pi*x), where K and E are the complete elliptic integrals of the first and second kind, respectively, with modulus k = 4*x. - Benedict W. J. Irwin, Aug 15 2016
From Wolfdieter Lang, Sep 06 2016 (Start):
The preceding g.f. can be rewritten as ((1+4*x)*F(1/2,1/2;1;(4*x)^2) -
F(-1/2,1/2;1;(4*x)^2))/(4*x), where F is the hypergyometric function F(a,b;c;z).
This leads to the bisection a(2*k) = ((2*k)!)^2/k!^4 = A002894(k) and a(2*k+1) = 2*(2*k)!*(2*k+1)!/((k+1)*k!^4) = 2*A000894(k), for k >= 0.
(End)