A241541 Exponent of 11 in prime factorization of (2^n + 3^n + 5^n + 7^n).
0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 0
Keywords
Examples
at n = 5, 2^n + 3^n + 5^n + 7^n = 20207 = 11^2*167, at n = 15, 2^n + 3^n + 5^n + 7^n = 4778093469743 = 11^2*587*67271509.
Links
- Zak Seidov, Table n, a(-5 + 10*n) for n = 1..10^4.
Programs
-
Mathematica
Table[IntegerExponent[2^n + 3^n + 5^n + 7^n, 11], {n, 0, 100}]
-
PARI
a(n)=valuation(2^n+3^n+5^n+7^n,11) \\ Charles R Greathouse IV, Apr 25 2014
-
PARI
a(n,e=8)=my(m=11^e, o=valuation(Mod(2,m)^n +Mod(3,m)^n +Mod(5,m)^n +Mod(7,m)^n, 11)); if(o
Charles R Greathouse IV, Apr 25 2014
Comments