A241549 Number of partitions p of n such that (number of numbers of the form 5k in p) is a part of p.
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 48, 67, 91, 122, 163, 215, 283, 369, 478, 615, 786, 1004, 1270, 1604, 2014, 2521, 3139, 3902, 4824, 5954, 7314, 8970, 10957, 13362, 16232, 19691, 23804, 28737, 34581, 41559, 49802, 59596, 71139, 84799
Offset: 0
Examples
a(6) counts this single partition: 51.
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 5], k] Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (* A241549 *) Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (* A241550 *) Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (* A241551 *) Table[Count[f[n], p_ /; MemberQ[p, s[3, p]]], {n, 0, z}] (* A241552 *) Table[Count[f[n], p_ /; MemberQ[p, s[4, p]]], {n, 0, z}] (* A241553 *)
Comments