A241555 Triangle read by rows: Number T(n,k) of 2-colored binary rooted trees with n nodes and exactly k <= n nodes of a specific color.
1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 11, 16, 11, 3, 6, 26, 50, 50, 26, 6, 11, 60, 143, 188, 143, 60, 11, 23, 142, 404, 656, 656, 404, 142, 23, 46, 334, 1105, 2143, 2652, 2143, 1105, 334, 46, 98, 794, 2995, 6737, 9934, 9934, 6737, 2995, 794, 98, 207, 1888, 7999, 20504, 35080, 41788, 35080, 20504, 7999, 1888, 207
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 2, 5, 5, 2; 3, 11, 16, 11, 3; 6, 26, 50, 50, 26, 6; 11, 60, 143, 188, 143, 60, 11; 23, 142, 404, 656, 656, 404, 142, 23; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- David Serena and William J. Buchanan, Equivalence Classes Induced by Binary Tree Isomorphism -- Generating Functions, arXiv:2503.02663 [math.CO], 2025. See p. 17.
Programs
-
Mathematica
B[m_] := Module[{u}, u = Table[0, {m}]; u[[1]] = 1; For[n = 1, n <= Length[u] - 1, n++, u[[n + 1]] = (1 + y)*(Sum[u[[i]]*u[[n + 1 - i]], {i, 1, n}] + If[OddQ[n], u[[Quotient[n, 2] + 1]] /. y -> y^2, 0])/2]; u]; CoefficientList[#, y]& /@ B[11] // Flatten (* Jean-François Alcover, Sep 24 2019, from PARI *)
-
PARI
B(n)={my(u=vector(n)); u[1]=1; for(n=1, #u-1, u[n+1]=(1+y)*(sum(i=1, n, u[i]*u[n+1-i]) + if(n%2, subst(u[n\2+1], y, y^2)))/2); u} { my(A=B(10)); for(n=1, #A, print(Vec(A[n]))) } \\ Andrew Howroyd, May 21 2018
Extensions
Edited by Nathaniel Johnston, Sep 11 2014
Missing term inserted and a(45) and beyond from Andrew Howroyd, May 21 2018
Comments