cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A249909 Smallest prime factor of A241601(n), or 1 if A241601(n) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 61, 1, 277, 1, 19, 691, 43, 1, 47, 3617, 228135437, 43867, 79, 283, 41737, 131, 31, 103, 2137, 657931, 67, 9349, 71, 1721, 15669721, 37, 930157, 151628697551, 4153, 26315271553053477373, 9257, 154210205991661, 23489580527043108252017828576198947741, 137616929, 763601
Offset: 0

Views

Author

Eric Chen, Dec 15 2014

Keywords

Comments

Also the smallest prime factor of A246006(n) that is >= n+2.
a(n) = A020639(A241601(n)).
a(n) = 1 iff n is in the set {0, 1, 2, 3, 4, 5, 6, 8, 10, 14}.
a(189) is currently unknown; a(190)..a(199) = {5101, 559570609330768709, 40833790860803270336710504624737304862569304959957, 311, 467, 34110029, 461, 26034939865747697437451558982836040663625026070193, 34470847, 1879}.
All terms are Bernoulli or Euler irregular primes.

Programs

  • Mathematica
    a246006[n_] := If[EvenQ[n], Abs[Numerator[BernoulliB[n]]], Abs[EulerE[n-1]]];
    a241601[n_] := a246006[n]/GCD[a246006[n], n!]
    a = {}; Do[a = Append[a, FactorInteger[a241601[n]][[1, 1]]], {n, 0, 99} ]; a

A250213 Number of distinct prime factors of A241601(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 1, 1, 1, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 4, 2, 2, 3, 3, 1, 3, 1, 3, 1, 1, 2, 3, 1, 3, 4, 5, 2, 2, 3, 1, 2, 4, 4, 4, 3, 4, 3, 5, 4, 2, 3, 3, 4, 5, 2, 3, 2, 4, 5, 5, 3, 3, 2, 5, 1, 5, 2, 4, 3, 2, 5, 3, 3, 2, 5, 3, 3, 4
Offset: 0

Views

Author

Eric Chen, Dec 28 2014

Keywords

Comments

a(n) = 0 iff n is in the set {0, 1, 2, 3, 4, 5, 6, 8, 10, 14};
a(n) = 1 iff n is in A250220.

Crossrefs

Programs

  • Mathematica
    b[n_] := Numerator[BernoulliB[2 n]/(2 n)];
    c[n_] := Numerator[SeriesCoefficient[Log[Tan[x]+1/Cos[x]], {x, 0, 2n+1}]];
    a[0] = 0; a[n_] := PrimeNu[If[EvenQ[n], Abs[b[n/2]], c[(n-1)/2]]];
    Table[a[n], {n, 0, 78}] (* Jean-François Alcover, Jul 04 2019 *)

Formula

a(n) = A001221(A241601(n)).

Extensions

More terms from Jean-François Alcover, Jul 04 2019
More terms from Jinyuan Wang, Apr 02 2020

A250214 Number of values of k such that prime(n) divides A241601(k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 2, 0, 1, 1, 0, 1, 1, 3, 3, 0, 0, 0, 0, 1, 2, 3, 1, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 0, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 1, 0, 1, 2, 2, 1, 2, 0, 1, 3, 3, 1, 0, 0, 1, 1, 3, 3, 2, 0, 0, 3, 1, 1
Offset: 1

Views

Author

Eric Chen, Dec 26 2014

Keywords

Comments

a(n) is called the weak irregular index of n-th prime, that is, the Bernoulli irregular index + Euler irregular index.
Prime(n) is a regular prime if and only if a(n) = 0.
Does every natural number appear in this sequence? For example, for the primes 491 and 1151, a(94) = a(190) = 4. (491 and 1151 are the only primes below 1800 with weak irregular index 4 or more.) However, does a(n) have a limit?

Examples

			a(8) = 1 since the 8th prime is 19, which divides A241601(11).
a(13) = 0 since the 13th prime is 41, a regular prime.
a(19) = 2 since the 19th prime is 67, which divides both A241601(27) and A241601(58).
		

Crossrefs

A250220 Numbers k such that A241601(k) is prime.

Original entry on oeis.org

7, 9, 12, 16, 17, 18, 26, 34, 36, 38, 39, 42, 49, 74, 114, 118, 337, 396, 455
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

Is the sequence infinite?
No other terms < 500. - Jinyuan Wang, Apr 02 2020

Crossrefs

Extensions

a(17)-a(19) from Jinyuan Wang, Apr 02 2020

A250215 Least k such that the n-th weak irregular prime (A250216(n)) divides A241601(k).

Original entry on oeis.org

11, 23, 32, 13, 15, 44, 7, 27, 29, 19, 63, 24, 22, 43, 129, 130, 62, 75, 133, 84, 211, 127, 164, 100, 84, 9, 20, 156, 88, 87, 280, 19, 71, 125, 163, 100, 200, 382, 126, 159, 240, 215, 196, 130, 94, 292, 141, 400, 86, 270, 222, 175, 389, 52, 45, 22, 592, 522, 20
Offset: 1

Views

Author

Eric Chen, Dec 26 2014

Keywords

Comments

A prime p can divide A241601(k) for more than one k; the first few examples are as follows:
p k
67 27, 58
101 63, 68
149 130, 147
157 62, 110
241 211, 239
263 100, 213
307 88, 91, 137
311 87, 193, 292
349 19, 257
353 71, 186, 300
etc.

Examples

			19 is the first weak irregular prime and divides A241601(11) = 50521, so a(1) = 11.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Feb 18 2022

A250216 Weak irregular primes. A prime is weak irregular iff it is a Bernoulli irregular prime or an Euler irregular prime.

Original entry on oeis.org

19, 31, 37, 43, 47, 59, 61, 67, 71, 79, 101, 103, 131, 137, 139, 149, 157, 193, 223, 233, 241, 251, 257, 263, 271, 277, 283, 293, 307, 311, 347, 349, 353, 359, 373, 379, 389, 401, 409, 419, 421, 433, 461, 463, 467, 491, 509, 523, 541, 547, 557, 563, 571, 577, 587, 593
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

Primes p which divide A241601(k) for some k.

Crossrefs

Programs

  • Mathematica
    pmax = 593; m0 = 200; dm = 100;
    b[n_] := Numerator[BernoulliB[2 n]/(2 n)];
    c[n_] := Numerator[SeriesCoefficient[Log[Tan[x]+1/Cos[x]], {x, 0, 2n+1}]];
    (* a1 = A241601 *) a1[0] = 1; a1[n_] := a1[n] = If[EvenQ[n], b[n/2] // Abs, c[(n - 1)/2]];
    f[m_] := f[m] = Module[{}, aa = Table[a1[n], {n, 0, m}]; okQ[p_] := AnyTrue[aa, Divisible[#, p] &]; Reap[For[p = 2, p <= pmax, p = NextPrime[p], If[okQ[p], Sow[p]]]][[2, 1]]];
    f[m = m0]; f[m = m + dm];
    While[Print["m = ", m]; f[m] != f[m - dm], m = m + dm];
    A250216 = f[m] (* Jean-François Alcover, Jul 23 2019 *)
Showing 1-6 of 6 results.