A241636 Number of partitions p of n such that (number of even numbers in p) < (number of odd numbers in p).
0, 1, 1, 2, 2, 3, 5, 6, 10, 13, 21, 25, 40, 47, 69, 85, 118, 142, 192, 236, 310, 381, 485, 606, 761, 949, 1168, 1462, 1793, 2230, 2697, 3358, 4040, 4987, 5967, 7348, 8746, 10688, 12675, 15403, 18247, 22028, 25995, 31236, 36798, 43963, 51706, 61487, 72197
Offset: 0
Examples
a(6) counts these 5 partitions: 51, 33, 321, 3111, 111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0]; s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1]; Table[Count[f[n], p_ /; s0[p] < s1[p]], {n, 0, z}] (* A241636 *) Table[Count[f[n], p_ /; s0[p] <= s1[p]], {n, 0, z}] (* A241637 *) Table[Count[f[n], p_ /; s0[p] == s1[p]], {n, 0, z}] (* A241638 *) Table[Count[f[n], p_ /; s0[p] >= s1[p]], {n, 0, z}] (* A241639 *) Table[Count[f[n], p_ /; s0[p] > s1[p]], {n, 0, z}] (* A241640 *)
Comments