A241637 Number of partitions p of n such that (number of even numbers in p) <= (number of odd numbers in p).
1, 1, 1, 3, 3, 7, 8, 14, 16, 26, 32, 45, 57, 78, 103, 132, 174, 220, 295, 361, 477, 584, 766, 921, 1194, 1436, 1841, 2207, 2782, 3331, 4169, 4981, 6156, 7373, 9019, 10778, 13093, 15636, 18843, 22507, 26920, 32096, 38205, 45470, 53845, 63970, 75377, 89356
Offset: 0
Examples
a(6) counts these 8 partitions: 51, 411, 33, 321, 3111, 2211, 21111, 111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0]; s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1]; Table[Count[f[n], p_ /; s0[p] < s1[p]], {n, 0, z}] (* A241636 *) Table[Count[f[n], p_ /; s0[p] <= s1[p]], {n, 0, z}] (* A241637 *) Table[Count[f[n], p_ /; s0[p] == s1[p]], {n, 0, z}] (* A241638 *) Table[Count[f[n], p_ /; s0[p] >= s1[p]], {n, 0, z}] (* A241639 *) Table[Count[f[n], p_ /; s0[p] > s1[p]], {n, 0, z}] (* A241640 *)
Comments