A241638 Number of partitions p of n such that (number of even numbers in p) = (number of odd numbers in p).
1, 0, 0, 1, 1, 4, 3, 8, 6, 13, 11, 20, 17, 31, 34, 47, 56, 78, 103, 125, 167, 203, 281, 315, 433, 487, 673, 745, 989, 1101, 1472, 1623, 2116, 2386, 3052, 3430, 4347, 4948, 6168, 7104, 8673, 10068, 12210, 14234, 17047, 20007, 23671, 27869, 32739, 38609, 45010
Offset: 0
Examples
a(6) counts these 3 partitions: 411, 2211, 21111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0]; s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1]; Table[Count[f[n], p_ /; s0[p] < s1[p]], {n, 0, z}] (* A241636 *) Table[Count[f[n], p_ /; s0[p] <= s1[p]], {n, 0, z}] (* A241637 *) Table[Count[f[n], p_ /; s0[p] == s1[p]], {n, 0, z}] (* A241638 *) Table[Count[f[n], p_ /; s0[p] >= s1[p]], {n, 0, z}] (* A241639 *) Table[Count[f[n], p_ /; s0[p] > s1[p]], {n, 0, z}] (* A241640 *)
Comments