cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241669 Irregular triangular array read by rows: T(n,k) is the number of 2-colored simple labeled graphs on n nodes that have exactly k edges, 0<=k<=A002620(n), n>=1.

Original entry on oeis.org

0, 2, 2, 6, 12, 6, 14, 48, 60, 32, 6, 30, 160, 360, 440, 310, 120, 20, 62, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20, 126, 1344, 6720, 20720, 43680, 66108, 73514, 60480, 36540, 15820, 4662, 840, 70, 254, 3584, 24192, 103040, 308560, 686784, 1172976, 1565888, 1649340, 1373680, 900592, 459312, 178416, 50960, 10080, 1232, 70, 510, 9216, 80640, 451584, 1808352, 5491584, 13102992, 25128720, 39312018, 50638224, 53981928, 47698560, 34869744, 20975472, 10281672, 4044096, 1246644, 290304, 48048, 5040, 252
Offset: 1

Views

Author

Geoffrey Critzer, Aug 08 2014

Keywords

Examples

			Triangle begins:
  0,
  2,  2,
  6,  12,  6,
  14, 48,  60,   32,   6,
  30, 160, 360,  440,  310,  120,  20,
  62, 480, 1680, 3480, 4680, 4212, 2520, 960, 210, 20
		

Crossrefs

Cf. A002620, A213441 (row sums).

Programs

  • Mathematica
    nn=10;f[x_]:=Sum[x^n/(n!*(1+y)^(n^2/2)),{n,0,nn}];CoefficientList[Table[n!*(1+y)^(n^2/2),{n,0,nn}]CoefficientList[Series[(f[x]-1)^2,{x,0,nn}],x]//Simplify//Expand,y]//Grid

Formula

E.g.f.: Sum_{n>=1} (exp(1 + y)^n*x - 1)*x^n/n!.