cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241688 Number of Sidon subsets of {1,...,n} of size 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 10, 26, 60, 110, 190, 304, 466, 676, 958, 1312, 1762, 2310, 2984, 3786, 4750, 5874, 7196, 8720, 10484, 12488, 14780, 17360, 20276, 23530, 27174, 31210, 35696, 40630, 46074, 52032, 58566, 65676, 73434, 81840, 90966, 100814, 111460, 122906
Offset: 1

Views

Author

Carl Najafi, Apr 27 2014

Keywords

Comments

A Sidon set is a set of natural numbers A={a_1,a_2,...}, finite or infinite, such that all pairwise sums a_i+a_j (i <= j) are different.

Examples

			a(7)=2 since the only subsets of {1,...,7} satisfying the required conditions are {1,2,5,7} and {1,3,6,7}.
		

Crossrefs

Column k=4 of A381476.
Cf. A054578.

Programs

  • Mathematica
    SidonQ[l__] := If[Length[Join[Plus @@@ Subsets[l, {2}], 2 l]] == Length[Union[Join[Plus @@@ Subsets[l, {2}], 2 l]]], True, False]
    Table[Length@Select[Subsets[Range[n], {4}], SidonQ[#] &], {n, 1, 30}]

Formula

It appears to be the case that G.f.: 2*x^7*(1+3*x+3*x^2+5*x^3)/((1-x)^5*(1+x)^2*(1+x^2)*(1+x+x^2)), corrected by Vaclav Kotesovec, May 03 2014
a(n) ~ 1/24*n^4 (deduced from g.f.). - Ralf Stephan, Apr 29 2014
a(n) = a(n-11)+a(n-8)-a(n-3)+2*(a(n-6)+a(n-1)-a(n-10)-a(n-5)). - Fung Lam, May 02 2014
Explicit formula (derived from g.f.): a(n) = n^4/24 - 7*n^3/12 + 29*n^2/12 - 15*n/8 - floor(n/4) - 4/3*floor(n/3) + (n/2-9/4)*floor(n/2) - floor((n+1)/4) - 2/3*floor((n+1)/3). - Vaclav Kotesovec, May 03 2014