A241691 Number of Carlitz compositions of n with exactly one descent.
1, 2, 4, 8, 13, 21, 33, 50, 73, 106, 150, 209, 289, 393, 529, 707, 935, 1227, 1601, 2072, 2666, 3413, 4344, 5501, 6937, 8707, 10883, 13554, 16815, 20787, 25617, 31465, 38532, 47056, 57302, 69596, 84320, 101907, 122875, 147833, 177471, 212608, 254201, 303335
Offset: 3
Keywords
Examples
a(3) = 1: [2,1]. a(4) = 2: [3,1], [1,2,1]. a(5) = 4: [4,1], [3,2], [2,1,2], [1,3,1]. a(6) = 8: [4,2], [5,1], [3,1,2], [1,3,2], [1,4,1], [2,3,1], [2,1,3], [1,2,1,2]. a(7) = 13: [4,3], [6,1], [5,2], [2,1,4], [4,1,2], [1,4,2], [2,3,2], [3,1,3], [1,5,1], [2,4,1], [1,2,3,1], [1,3,1,2], [1,2,1,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Column k=1 of A241701.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, convert(series(add(`if`(i=j, 0, b(n-j, j)* `if`(j coeff(b(n, 0), x, 1): seq(a(n), n=3..50);
Comments