A243222 Primes p such that p^3 - 2 and p^2 - 2 are both semiprimes.
11, 17, 41, 79, 199, 307, 331, 349, 379, 613, 643, 661, 673, 701, 769, 877, 883, 947, 1049, 1249, 1279, 1301, 1319, 1381, 1423, 1483, 1543, 1559, 1609, 1667, 1699, 1759, 1777, 1801, 1831, 1871, 1993, 2011, 2083, 2347, 2539, 2621, 2671, 2687, 2777, 2833, 2861
Offset: 1
Keywords
Examples
11 is prime and appears in the sequence because [ 11^3 - 2 = 1329 = 3 * 443 ] and [ 11^2 - 2 = 119 = 7 * 17 ] are both semiprimes. 17 is prime and appears in the sequence because [ 17^3 - 2 = 4911 = 3 * 1637 ] and [ 17^2 - 2 = 287 = 7 * 41 ] are both semiprimes.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A243222:= proc() local p; p:=ithprime(n); if bigomega(p^3-2)=2 and bigomega(p^2-2) =2 then RETURN (p); fi; end: seq( A 243222 (), n=1..1000);
-
Mathematica
A243222 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 - 2] == 2 && PrimeOmega[t^2 - 2] == 2, AppendTo[A243222, t]], {n, 1000}]; A243222
-
PARI
s=[]; forprime(p=2, 3000, if(bigomega(p^2-2)==2 && bigomega(p^3-2)==2, s=concat(s, p))); s \\ Colin Barker, Jun 03 2014
Comments