cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243222 Primes p such that p^3 - 2 and p^2 - 2 are both semiprimes.

Original entry on oeis.org

11, 17, 41, 79, 199, 307, 331, 349, 379, 613, 643, 661, 673, 701, 769, 877, 883, 947, 1049, 1249, 1279, 1301, 1319, 1381, 1423, 1483, 1543, 1559, 1609, 1667, 1699, 1759, 1777, 1801, 1831, 1871, 1993, 2011, 2083, 2347, 2539, 2621, 2671, 2687, 2777, 2833, 2861
Offset: 1

Views

Author

K. D. Bajpai, Jun 01 2014

Keywords

Comments

Similar sequence for primes is A242979.
Intersection of A241716 and A242260.

Examples

			11 is prime and appears in the sequence because [ 11^3 - 2 = 1329 = 3 * 443 ] and [ 11^2 - 2 = 119 = 7 * 17 ] are both semiprimes.
17 is prime and appears in the sequence because [ 17^3 - 2 = 4911 = 3 * 1637 ] and [ 17^2 - 2 = 287 = 7 * 41 ] are both semiprimes.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A243222:= proc() local p; p:=ithprime(n); if bigomega(p^3-2)=2 and bigomega(p^2-2) =2 then RETURN (p);  fi; end: seq( A 243222 (), n=1..1000);
  • Mathematica
    A243222 = {}; Do[t = Prime[n]; If[PrimeOmega[t^3 - 2] == 2 && PrimeOmega[t^2 - 2] == 2, AppendTo[A243222, t]], {n, 1000}]; A243222
  • PARI
    s=[]; forprime(p=2, 3000, if(bigomega(p^2-2)==2 && bigomega(p^3-2)==2, s=concat(s, p))); s \\ Colin Barker, Jun 03 2014
Showing 1-1 of 1 results.