A241719 Number T(n,k) of compositions of n into distinct parts with exactly k descents; triangle T(n,k), n>=0, 0<=k<=max(floor((sqrt(1+8*n)-3)/2),0), read by rows.
1, 1, 1, 2, 1, 2, 1, 3, 2, 4, 6, 1, 5, 7, 1, 6, 11, 2, 8, 16, 3, 10, 31, 15, 1, 12, 36, 16, 1, 15, 55, 29, 2, 18, 71, 41, 3, 22, 101, 65, 5, 27, 147, 144, 32, 1, 32, 188, 179, 35, 1, 38, 245, 269, 63, 2, 46, 327, 382, 93, 3, 54, 421, 549, 148, 5, 64, 540, 739, 205, 7
Offset: 0
Examples
T(6,0) = 4: [6], [2,4], [1,5], [1,2,3]. T(6,1) = 6: [5,1], [4,2], [3,1,2], [1,3,2], [2,1,3], [2,3,1]. T(6,2) = 1: [3,2,1]. T(7,0) = 5: [7], [3,4], [2,5], [1,6], [1,2,4]. T(7,1) = 7: [6,1], [4,3], [5,2], [2,1,4], [1,4,2], [2,4,1], [4,1,2]. T(7,2) = 1: [4,2,1]. Triangle T(n,k) begins: 00: 1; 01: 1; 02: 1; 03: 2, 1; 04: 2, 1; 05: 3, 2; 06: 4, 6, 1; 07: 5, 7, 1; 08: 6, 11, 2; 09: 8, 16, 3; 10: 10, 31, 15, 1; 11: 12, 36, 16, 1; 12: 15, 55, 29, 2; 13: 18, 71, 41, 3; 14: 22, 101, 65, 5; 15: 27, 147, 144, 32, 1;
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Crossrefs
Programs
-
Maple
g:= proc(u, o) option remember; `if`(u+o=0, 1, expand( add(g(u+j-1, o-j) , j=1..o)+ add(g(u-j, o+j-1)*x, j=1..u))) end: b:= proc(n, i) option remember; local m; m:= i*(i+1)/2; `if`(n>m, 0, `if`(n=m, x^i, expand(b(n, i-1) +`if`(i>n, 0, x*b(n-i, i-1))))) end: T:= n-> (p-> (q-> seq(coeff(q, x, i), i=0..degree(q)))(add( coeff(p, x, k)*g(0, k), k=0..degree(p))))(b(n$2)): seq(T(n), n=0..20);
-
Mathematica
g[u_, o_] := g[u, o] = If[u+o == 0, 1, Expand[Sum[g[u+j-1, o-j], {j, 1, o}] + Sum[g[u-j, o+j-1]*x, {j, 1, u}]]]; b[n_, i_] := b[n, i] = Module[{m}, m = i*(i+1)/2; If[n>m, 0, If[n == m, x^i, Expand[b[n, i-1] + If[i>n, 0, x*b[n-i, i-1]]]]]]; T[n_] := Function [p, Function[q, Table[Coefficient[q, x, i], {i, 0, Exponent[q, x]}]][Sum[Coefficient[p, x, k]*g[0, k], {k, 0, Exponent[p, x]}]]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Apr 28 2014, after Alois P. Heinz *)