A241741 Number of partitions p of n such that (number of numbers in p of form 3k+2) = (number of numbers in p of form 3k).
1, 1, 1, 1, 2, 3, 3, 5, 9, 11, 14, 22, 29, 36, 51, 66, 83, 107, 139, 170, 216, 273, 340, 415, 520, 635, 778, 952, 1177, 1414, 1724, 2094, 2527, 3038, 3691, 4411, 5286, 6345, 7586, 9008, 10778, 12796, 15163, 17979, 21288, 25059, 29608, 34861, 40927, 48035
Offset: 0
Examples
a(8) counts these 9 partitions: 71, 62, 53, 44, 41111, 332, 3221, 32111, 11111111.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = IntegerPartitions[n]; s[k_, p_] := Count[Mod[DeleteDuplicates[p], 3], k]; Table[Count[f[n], p_ /; s[2, p] < s[0, p]], {n, 0, z}] (* A241740 *) Table[Count[f[n], p_ /; s[2, p] == s[0, p]], {n, 0, z}] (* A241741 *) Table[Count[f[n], p_ /; s[2, p] > s[0, p]], {n, 0, z}] (* A241742 *)
Comments