A241749 a(n) = n^2 + 13.
13, 14, 17, 22, 29, 38, 49, 62, 77, 94, 113, 134, 157, 182, 209, 238, 269, 302, 337, 374, 413, 454, 497, 542, 589, 638, 689, 742, 797, 854, 913, 974, 1037, 1102, 1169, 1238, 1309, 1382, 1457, 1534, 1613, 1694, 1777, 1862, 1949, 2038, 2129, 2222, 2317, 2414, 2513
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. similar sequences listed in A114962.
Programs
-
Magma
[n^2+13: n in [0..60]];
-
Mathematica
Table[n^2 + 13, {n, 0, 60}]
-
PARI
a(n)=n^2+13 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (13 - 25*x + 14*x^2)/(1 - x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3) = a(n-1) + 2*n - 1.
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(13)*Pi*coth(sqrt(13)*Pi))/26.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(13)*Pi*cosech(sqrt(13)*Pi))/26. (End)
E.g.f.: exp(x)*(13 + x + x^2). - Elmo R. Oliveira, Apr 20 2025
Comments