cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241807 Numerators of c(n) = (n^2+n+2)/((n+1)*(n+2)*(n+3)) as defined in A241269.

Original entry on oeis.org

1, 1, 2, 7, 11, 2, 11, 29, 37, 23, 28, 67, 79, 23, 53, 121, 137, 77, 86, 191, 211, 29, 127, 277, 301, 163, 176, 379, 407, 109, 233, 497, 529, 281, 298, 631, 667, 88, 371, 781, 821, 431, 452, 947, 991, 259, 541, 1129, 1177, 613, 638
Offset: 0

Views

Author

Keywords

Comments

The subsequence 1, 23, 77, 163, 281, 431, 613, 827, ..., with indices congruent to 1 mod 8, is 16n^2+6n+1, that is, A000124(8n+1)/2 or A014206(8n+1)/4. Its second differences are constant: (16n^2+6n+1)'' = 32.
The sequence A014206/A241807 is integral and consists of the 16-periodic sequence (2, 4, 4, 2, 2, 16, 4, 2, 2, 4, 4, 2, 2, 8, 4, 2, ...).

Examples

			1/3, 1/6, 2/15, 7/60, 11/105, 2/21, 11/126, 29/360, 37/495, 23/330, ...
		

Crossrefs

Programs

  • Mathematica
    Table[(n^2+n+2)/((n+1)*(n+2)*(n+3)) // Numerator, {n, 0, 50}]

Formula

a(n) = A014206(n)/period 16: repeat 2, 4, 4, 2, 2, 16, 4, 2, 2, 4, 4, 2, 2, 8, 4, 2 (conjectured).
a(4k) = 8*k^2 +2*k +1,
a(4k+2) = 4*k^2 +5*k +2,
a(4k+3) = 8*k^2 +14*k +7,
a(8k+1) = 16*k^2 +6*k +1,
a(16k+5) = 16*k^2 +11*k +2,
a(16k+13) = 32*k^2 + 54*k +23.