A241838 Column 1 of A237270, also the right border.
1, 3, 2, 7, 3, 12, 4, 15, 5, 9, 6, 28, 7, 12, 8, 31, 9, 39, 10, 42, 11, 18, 12, 60, 13, 21, 14, 56, 15, 72, 16, 63, 17, 27, 18, 91, 19, 30, 20, 90, 21, 96, 22, 42, 23, 36, 24, 124, 25, 39, 26, 49, 27, 120, 28, 120, 29, 45, 30, 168, 31, 48, 32, 127
Offset: 1
Examples
For n = 45 the symmetric representation of sigma(45) = 78 has three parts [23, 32, 23], both the first and the last term are equal to 23, so a(45) = 23.
Links
- Robert Price, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Map[First[a237270[#]]&,Range[64]] (* data : computing all parts *) (* computing only the first part of the symmetric representation of sigma(n) *) row[n_] := Floor[(Sqrt[8n+1]-1)/2] (* in A237591 *) f[n_, k_] := If[Mod[n-k*(k+1)/2, k]==0, (-1)^(k+1), 0] g[n_, k_] := Ceiling[(n+1)/k-(k+1)/2] - Ceiling[(n+1)/(k+1)-(k+2)/2] (* in A237591 *) a241838[n_] := Module[{r=row[n], widths={}, i=1, w=0, len, legs}, w+=f[n, i]; While[i<=r && w!=0, AppendTo[widths, w]; i++; w+=f[n, i]]; len=Length[widths]; legs=Map[g[n, #]&, Range[len]]; If[len
Hartmut F. W. Hoft, Jan 25 2018 *)
Comments