A241881 Number of ascent sequences of length n with the maximal number of descents.
1, 1, 2, 1, 7, 4, 1, 48, 26, 8, 1, 594, 262, 76, 13, 1, 10030, 3571, 933, 169, 19, 1, 205271, 61206, 14351, 2550, 323, 26, 1, 4910802, 1263620, 267378, 45321, 5918, 559, 34, 1, 134636523, 30534920, 5873492, 939681, 121689, 12257, 901, 43, 1, 4166817191
Offset: 0
Keywords
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..140
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add( `if`(ji, 1, 0)), j=0..t+1))) end: a:= n-> (p-> coeff(p, x, degree(p)))(b(n, -1$2)): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[ji, 1, 0]], {j, 0, t+1}]]]; a[n_] := Function[{p}, Coefficient[p, x, Exponent[ p, x ]]][b[n, -1, -1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 13 2015, after Maple *)
Formula
a(n) = A238858(n,Re(n-floor((sqrt(8*n-7)+1)/2))).
Comments