cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241881 Number of ascent sequences of length n with the maximal number of descents.

Original entry on oeis.org

1, 1, 2, 1, 7, 4, 1, 48, 26, 8, 1, 594, 262, 76, 13, 1, 10030, 3571, 933, 169, 19, 1, 205271, 61206, 14351, 2550, 323, 26, 1, 4910802, 1263620, 267378, 45321, 5918, 559, 34, 1, 134636523, 30534920, 5873492, 939681, 121689, 12257, 901, 43, 1, 4166817191
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, May 01 2014

Keywords

Comments

a(n*(n+1)/2) = a(A000217(n)) = 1.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(ji, 1, 0)), j=0..t+1)))
        end:
    a:= n-> (p-> coeff(p, x, degree(p)))(b(n, -1$2)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[ji, 1, 0]], {j, 0, t+1}]]]; a[n_] := Function[{p}, Coefficient[p, x, Exponent[ p, x ]]][b[n, -1, -1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 13 2015, after Maple *)

Formula

a(n) = A238858(n,Re(n-floor((sqrt(8*n-7)+1)/2))).