A241897 Primes p equal to the sum in base 3 of the digits of all primes < p - digit-sum of the index of prime p(i-1).
67, 71, 97, 101, 149, 223, 656267, 697511, 697951, 698447, 699493, 700277, 715373, 883963, 888203, 888211, 992021, 992183, 992891, 993241, 994181, 1155607, 1155829, 1308121, 1308649, 1310093, 1313083, 1317409, 1320061, 1320157, 1320379, 1322521, 1322591
Offset: 1
Examples
67 = digit-sum(2..61,b=3) - digit-sum(index(61),b=3) = sum(2) + sum(1,0) + sum(1,2) + sum(2,1) + sum(1,0,2) + sum(1,1,1) + sum(1,2,2) + sum(2,0,1) + sum(2,1,2) + sum(1,0,0,2) + sum(1,0,1,1) + sum(1,1,0,1) + sum(1,1,1,2) + sum(1,1,2,1) + sum(1,2,0,2) + sum(1,2,2,2) + sum(2,0,1,2) + sum(2,0,2,1) - digit-sum(200).
Links
- Anthony Sand, Table of n, a(n) for n = 1..46
Crossrefs
Programs
-
PARI
seq(maxp)={my(p=1,L=List(),s=0,k=0); while(p
Andrew Howroyd, Mar 01 2018
Formula
prime(n) such that, using base 3, prime(n) = sum_{1..n-1} A239619(i) - sum_{index(n-1)}
Extensions
a(29)-a(33) from Andrew Howroyd, Mar 02 2018
Comments