A241926 Table read by antidiagonals: T(n,k) (n >= 1, k >= 1) is the number of necklaces with n black beads and k white beads.
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 3, 5, 5, 3, 1, 1, 4, 7, 10, 7, 4, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1
Examples
The table starts: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, ... 1, 2, 4, 5, 7, 10, 12, 15, 19, 22, 26, 31, ... 1, 3, 5, 10, 14, 22, 30, 43, 55, 73, 91, 116, ... 1, 3, 7, 14, 26, 42, 66, 99, 143, 201, 273, 364, ... 1, 4, 10, 22, 42, 80, 132, 217, 335, 504, 728, 1038, ... ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
- A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233--238. MR1691428 (2000c:13006)
- A. Elashvili, M. Jibladze and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173--188. MR1719140 (2000j:05009). See p. 174. - _N. J. A. Sloane_, Aug 06 2014
- N. J. A. Sloane, A Note on Modular Partitions and Necklaces
Crossrefs
Programs
-
Maple
# Maple program for the table - N. J. A. Sloane, May 03 2014: with(numtheory); T:=proc(n,k) local d, s, g, t0; t0:=0; s:=n+k; g:=gcd(n,k); for d from 1 to s do if (g mod d) = 0 then t0:=t0+phi(d)*binomial(s/d,k/d); fi; od: t0/s; end; r:=n->[seq(T(n,k),k=1..12)]; [seq(r(n),n=1..12)];
-
Mathematica
T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#] Binomial[(n+k)/#, n/#]& ]/ (n+k); Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
-
PARI
T(n,k) = sumdiv(gcd(n,k),d,eulerphi(d)*binomial((n+k)\d,n\d))/(n+k)
Formula
T(n,k) = (Sum_{d | gcd(n,k)} phi(d)*binomial((n+k)/d, n/d))/(n+k). [Corrected by N. J. A. Sloane, May 03 2014]
Extensions
Edited by N. J. A. Sloane, May 03 2014
Elashvili et al. references supplied by Vladimir Popov, May 17 2014
Comments