cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A047996 Triangle read by rows: T(n,k) is the (n,k)-th circular binomial coefficient, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 1, 6, 22
Offset: 0

Views

Author

Keywords

Comments

Equivalently, T(n,k) = number of necklaces with k black beads and n-k white beads (binary necklaces of weight k).
The same sequence arises if we take the table U(n,k) = number of necklaces with n black beads and k white beads and read it by antidiagonals (cf. A241926). - Franklin T. Adams-Watters, May 02 2014
U(n,k) is also equal to the number of ways to express 0 as a sum of k elements in Z/nZ. - Jens Voß, Franklin T. Adams-Watters, N. J. A. Sloane, Apr 30 2014 - May 05 2014. See link ("A Note on Modular Partitions and Necklaces") for proof.
The generating function for column k is given by the substitution x_j -> x^j/(1-x^j) in the cycle index of the Symmetric Group of order k. - R. J. Mathar, Nov 15 2018
From Petros Hadjicostas, Jul 12 2019: (Start)
Regarding the comments above by Voss, Adams-Watters, and Sloane, note that Fredman (1975) proved that the number S(n, k, v) of vectors (a_0, ..., a_{n-1}) of nonnegative integer components that satisfy a_0 + ... + a_{n-1} = k and Sum_{i=0..n-1} i*a_i = v (mod n) is given by S(n, k, v) = (1/(n + k)) * Sum_{d | gcd(n, k)} A054535(d, v) * binomial((n + k)/d, k/d) = S(k, n, v).
This result was also proved by Elashvili et al. (1999), who also proved that S(n, k, v) = Sum_{d | gcd(n, k, v)} S(n/d, k/d, 1). Here, S(n, k, 0) = A241926(n, k) = U(n, k) = T(n + k, k) (where T(n, k) is the current array). Also, S(n, k, 1) = A245558(n, k). See also Panyushev (2011) for more general results and for generating functions.
Finally, note that A054535(d, v) = c_d(v) = Sum_{s | gcd(d,v)} s*Moebius(d/s). These are the Ramanujan sums, which equal also the von Sterneck function c_d(v) = phi(d) * Moebius(d/gcd(d, v))/phi(d/gcd(d, v)). We have A054535(d, v) = A054534(v, d).
It would be interesting to see whether there is a proof of the results by Fredman (1975), Elashvili et al. (1999), and Panyushev (2011) for a general v using Molien series as it is done by Sloane (2014) for the case v = 0 (in which case, A054535(d, 0) = phi(d)). (Even though the columns of array A054535(d, v) start at v = 1, we may start the array at column v = 0 as well.)
(End)
U(n, k) is the number of equivalence classes of k-tuples of residues modulo n, identifying those that differ componentwise by a constant and those that differ by a permutation. - Álvar Ibeas, Sep 21 2021

Examples

			Triangle starts:
[ 0]  1,
[ 1]  1,  1,
[ 2]  1,  1,  1,
[ 3]  1,  1,  1,  1,
[ 4]  1,  1,  2,  1,  1,
[ 5]  1,  1,  2,  2,  1,  1,
[ 6]  1,  1,  3,  4,  3,  1,  1,
[ 7]  1,  1,  3,  5,  5,  3,  1,  1,
[ 8]  1,  1,  4,  7, 10,  7,  4,  1,  1,
[ 9]  1,  1,  4, 10, 14, 14, 10,  4,  1,  1,
[10]  1,  1,  5, 12, 22, 26, 22, 12,  5,  1, 1,
[11]  1,  1,  5, 15, 30, 42, 42, 30, 15,  5, 1, 1,
[12]  1,  1,  6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, ...
		

References

  • N. G. de Bruijn, Polya's theory of counting, in: Applied Combinatorial Mathematics (E. F. Beckenbach, ed.), John Wiley and Sons, New York, 1964, pp. 144-184 (implies g.f. for this triangle).
  • Richard Stanley, Enumerative Combinatorics, 2nd. ed., Vol 1, Chapter I, Problem 105, pp. 122 and 168, discusses the number of subsets of Z/nZ that add to 0. - N. J. A. Sloane, May 06 2014
  • J. Voß, Posting to Sequence Fans Mailing List, April 30, 2014.
  • H. S. Wilf, personal communication to N. J. A. Sloane, Nov., 1990.
  • See A000031 for many additional references and links.

Crossrefs

Row sums: A000031. Columns 0-12: A000012, A000012, A004526, A007997(n+5), A008610, A008646, A032191-A032197.
See A037306 and A241926 for essentially identical triangles.
See A245558, A245559 for a closely related array.

Programs

  • Maple
    A047996 := proc(n,k) local C,d; if k= 0 then return 1; end if; C := 0 ; for d in numtheory[divisors](igcd(n,k)) do C := C+numtheory[phi](d)*binomial(n/d,k/d) ; end do: C/n ; end proc:
    seq(seq(A047996(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; t[0, 0] = 1; Flatten[Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jul 19 2011, after given formula *)
  • PARI
    p(n) = if(n<=0, n==0, 1/n * sum(i=0,n-1, (x^(n/gcd(i,n))+1)^gcd(i,n) ));
    for (n=0,17, print(Vec(p(n)))); /* print triangle */
    /* Joerg Arndt, Sep 28 2012 */
    
  • PARI
    T(n,k) = if(n<=0, n==0, 1/n * sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d,k/d) ) );
    /* print triangle: */
    { for (n=0, 17, for (k=0, n, print1(T(n,k),", "); ); print(); ); }
    /* Joerg Arndt, Oct 21 2012 */

Formula

T(n, k) = (1/n) * Sum_{d | (n, k)} phi(d)*binomial(n/d, k/d).
T(2*n,n) = A003239(n); T(2*n+1,n) = A000108(n). - Philippe Deléham, Jul 25 2006
G.f. for row n (n>=1): (1/n) * Sum_{i=0..n-1} ( x^(n/gcd(i,n)) + 1 )^gcd(i,n). - Joerg Arndt, Sep 28 2012
G.f.: Sum_{n, k >= 0} T(n, k)*x^n*y^k = 1 - Sum_{s>=1} (phi(s)/s)*log(1-x^s*(1+y^s)). - Petros Hadjicostas, Oct 26 2017
Product_{d >= 1} (1 - x^d - y^d) = Product_{i,j >= 0} (1 - x^i*y^j)^T(i+j, j), where not both i and j are zero. (It follows from Somos' infinite product for array A051168.) - Petros Hadjicostas, Jul 12 2019

Extensions

Name edited by Petros Hadjicostas, Nov 16 2017

A037306 Triangle T(n,k) read by rows: the number of compositions of n into k parts, modulo cyclic shifts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1

Views

Author

Jens Voß, Jun 30 2001

Keywords

Comments

Triangle obtained from A047996 by dropping the first column (k=0), and row (n=0).
T(n, k) = number of different ways the number n can be expressed as ordered sums of k positive integers, counting only once those ordered sums that can be transformed into each other by a cyclic permutation.
These might be described as cyclic compositions, or more loosely as cyclic partitions. - N. J. A. Sloane, Sep 05 2012

Examples

			Triangle begins
  1;
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  2,  2,  1,  1;
  1,  3,  4,  3,  1,  1;
  1,  3,  5,  5,  3,  1,  1;
  1,  4,  7, 10,  7,  4,  1,  1;
  1,  4, 10, 14, 14, 10,  4,  1,  1;
  1,  5, 12, 22, 26, 22, 12,  5,  1,  1;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1,  1;
T(6,3) = 4, since there are 4 essentially different ways 1+1+4, 1+2+3, 1+3+2 and 2+2+2 of expressing 6 as a sum of 3 summands (all others can be obtained by cyclically permuting the summands in one of the above sums).
		

References

  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

A047996 and A241926 are essentially identical to this entry.
Cf. A008965 (row sums), A000010, A007318, A027750, A215251, A004526 (column 2), A007997 (column 3), A008610 (column 4), A008646 (column 5), A032191 (column 6).
See A245558, A245559 for a closely related array.
See A052307 for compositions modulo cyclic shifts and reversal.

Programs

  • Haskell
    a037306 n k = div (sum $ map f $ a027750_row $ gcd n k) n where
       f d = a000010 d * a007318' (div n d) (div k d)
    a037306_row n = map (a037306 n) [1..n]
    a037306_tabl = map a037306_row [1..]
    -- Reinhard Zumkeller, Feb 06 2014
    
  • Maple
    A037306 := proc(n,k) local a,d; a := 0; for d in numtheory[divisors]( igcd(n,k)) do a := a+numtheory[phi](d)*binomial(n/d,k/d); end do: a/n; end proc:
    seq(seq(A037306(n,k), k=1..n), n=1..20); # R. J. Mathar, Jun 11 2011
  • Mathematica
    t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; Flatten[Table[t[n, k], {n, 13}, {k, n}]] (* Jean-François Alcover, Sep 08 2011, after formula *)
    nn=15;f[list_]:=Select[list,#>0&];Map[f,Transpose[Table[Drop[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^i/(1-x^i),{i,1,n}],{x,0,nn}],x],1],{n,1,nn}]]]//Grid  (* Geoffrey Critzer, Oct 30 2012 *)
  • PARI
    T(n, k) = sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d, k/d))/n; \\ Michel Marcus, Feb 10 2016

Formula

T(n,k) = (Sum_{d|gcd(n,k)} phi(d)*binomial(n/d,k/d))/n, where phi = A000010 = Euler's totient function. Also T(n,k) = A047996(n,k). - Paul Weisenhorn, Apr 06 2011

Extensions

More terms from David Wasserman, Mar 11 2002
Comments, reference, example from Paul Weisenhorn, Dec 18 2010

A245558 Square array read by antidiagonals: T(n,k) = number of n-tuples of nonnegative integers (u_0,...,u_{n-1}) satisfying Sum_{j=0..n-1} j*u_j == 1 mod n and Sum_{j=0..n-1} u_j = m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 7, 8, 7, 3, 1, 1, 4, 9, 14, 14, 9, 4, 1, 1, 4, 12, 20, 25, 20, 12, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2014

Keywords

Comments

The array is symmetric; for the entries on or below the diagonal see A245559.
If the congruence in the definition is changed from Sum_{j=0..n-1} j*u_j == 1 mod n to Sum_{j=0..n-1} j*u_j == 0 mod n we get the array shown in A241926, A047996, and A037306.
Differs from A011847 from row n = 9, k = 4 on; if the rows are surrounded by 0's, this yields A051168 without its rows 0 and 1, i.e., a(1) is A051168(2,1). - M. F. Hasler, Sep 29 2018
This array was first studied by Fredman (1975). - Petros Hadjicostas, Jul 10 2019

Examples

			Square array begins:
  1, 1,  1,  1,   1,   1,    1,    1,    1,    1, ...
  1, 1,  2,  2,   3,   3,    4,    4,    5,    5, ...
  1, 2,  3,  5,   7,   9,   12,   15,   18,   22, ...
  1, 2,  5,  8,  14,  20,   30,   40,   55,   70, ...
  1, 3,  7, 14,  25,  42,   66,   99,  143,  200, ...
  1, 3,  9, 20,  42,  75,  132,  212,  333,  497, ...
  1, 4, 12, 30,  66, 132,  245,  429,  715, 1144, ...
  1, 4, 15, 40,  99, 212,  429,  800, 1430, 2424, ...
  1, 5, 18, 55, 143, 333,  715, 1430, 2700, 4862, ...
  1, 5, 22, 70, 200, 497, 1144, 2424, 4862, 9225, ...
  ...
Reading by antidiagonals, we get:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,  1;
  1, 2,  3,  2,  1;
  1, 3,  5,  5,  3,   1;
  1, 3,  7,  8,  7,   3,   1;
  1, 4,  9, 14, 14,   9,   4,  1;
  1, 4, 12, 20, 25,  20,  12,  4,  1;
  1, 5, 15, 30, 42,  42,  30, 15,  5,  1;
  1, 5, 18, 40, 66,  75,  66, 40, 18,  5, 1;
  1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1;
  ...
		

Crossrefs

This array is very similar to but different from A011847.
Rows include A001840, A006918, A051170, A011796, A011797, A031164. Main diagonal is A022553.

Programs

  • Maple
    # To produce the first 10 rows and columns (as on page 174 of the Elashvili et al. 1999 reference):
    with(numtheory):
    cnk:=(n,k) -> add(mobius(n/d)*d, d in divisors(gcd(n,k)));
    anmk:=(n,m,k)->(1/(n+m))*add( cnk(d,k)*binomial((n+m)/d,n/d), d in divisors(gcd(n,m))); # anmk(n,m,k) is the value of a_k(n,m) as in Theorem 1, Equation (4), of the Elashvili et al. 1999 reference.
    r2:=(n,k)->[seq(anmk(n,m,k),m=1..10)];
    for n from 1 to 10 do lprint(r2(n,1)); od:
  • Mathematica
    rows = 12;
    cnk[n_, k_] := Sum[MoebiusMu[n/d] d, {d , Divisors[GCD[n, k]]}];
    anmk[n_, m_, k_] := (1/(n+m)) Sum[cnk[d, k] Binomial[(n+m)/d, n/d], {d, Divisors[GCD[n, m]]}];
    r2[n_, k_] := Table[anmk[n, m, k], {m, 1, rows}];
    T = Table[r2[n, 1], {n, 1, rows}];
    Table[T[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 05 2018, from Maple *)

A296359 Number of monohedral disk tilings of type C^t_{2n+1,2}.

Original entry on oeis.org

62, 1532, 50830, 1855110, 71292624, 2833906726, 115381823442, 4782782748036, 201037496481198, 8545008347772070, 366526239773992472, 15841416797530328062, 689082764185943820494, 30139654907867753730956, 1324572400153686602854414, 58455392031254908270140098
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n+k)/#, n/#]/(n+k) &];
    a[n_] := 2*Sum[U[i, 2*(4*n+2-i)], {i, 0, 4*n+2}];
    Array[a, 16] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    \\ here U is A241926
    U(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}
    a(n)={2*sum(i=0, 4*n+2, U(i,2*(4*n+2-i)))} \\ Andrew Howroyd, Jan 09 2018

Formula

a(n) = 2*Sum_{i=0..4*n+2} A241926(i, 2*(4*n+2-i)). - Andrew Howroyd, Jan 09 2018

Extensions

Terms a(6) and beyond from Lars Blomberg, Jan 09 2018

A296360 Number of monohedral disk tilings of type C^t_{2n+1,3}.

Original entry on oeis.org

116, 6402, 446930, 34121322, 2741227176, 227759341712, 19382568941318, 1679333068357460, 147541888215426742, 13107891004266127974, 1175188298096727647322, 106164291028322202227232, 9652457243380891557169712, 882443342536355491502025678
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n + k)/#, n/#]/(n + k) &];
    a[n_] := 2*Sum[U[i, 3*(4*n + 2 - i)], {i, 0, 4*n + 2}];
    Array[a, 16] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    \\ here U is A241926
    U(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}
    a(n)={2*sum(i=0, 4*n+2, U(i,3*(4*n+2-i)))} \\ Andrew Howroyd, Jan 09 2018

Formula

a(n) = 2*Sum_{i=0..4*n+2} A241926(i, 3*(4*n+2-i)). - Andrew Howroyd, Jan 09 2018

Extensions

Terms a(6) and beyond from Lars Blomberg, Jan 09 2018

A296361 Number of monohedral disk tilings of type C^t_{3,n}.

Original entry on oeis.org

2, 62, 116, 200, 318, 476, 682, 946, 1272, 1674, 2152, 2724, 3394, 4176, 5078, 6110, 7284, 8614, 10108, 11784, 13646, 15716, 18002, 20522, 23288, 26314, 29616, 33212, 37114, 41344, 45910, 50838, 56140, 61838, 67948, 74488, 81478, 88940, 96890, 105354, 114344
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n + k)/#, n/#]/(n + k) &];
    a[1] = 2; a[n_] := 2*Sum[U[i, n*(6 - i)], {i, 0, 6}];
    Array[a, 50] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    \\ here U is A241926
    U(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}
    a(n)={2*if(n<2, n==1, sum(i=0, 6, U(i,n*(6-i))))} \\ Andrew Howroyd, Jan 09 2018

Formula

Conjectures from Colin Barker, Jan 09 2018: (Start)
G.f.: 2*x*(1 + 28*x - 33*x^2 - 10*x^3 + 34*x^4 - 16*x^5 - 26*x^6 + 35*x^7 + 8*x^8 - 32*x^9 + 13*x^10) / ((1 - x)^5*(1 + x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - 3*a(n-6) + 2*a(n-7) + 2*a(n-8) - 3*a(n-9) + a(n-10) for n>11.
(End)
a(n) = 2*Sum_{i=0..6} A241926(i, n*(6-i)) for n > 1. - Andrew Howroyd, Jan 09 2018

Extensions

Terms a(6) and beyond from Lars Blomberg, Jan 09 2018

A296362 Number of monohedral disk tilings of type C^t_{5,n}.

Original entry on oeis.org

2, 1532, 6402, 19884, 51128, 115188, 235180, 445096, 792822, 1343814, 2185396, 3431466, 5227806, 7758398, 11251894, 15989150, 22311572, 30630012, 41434474, 55305224, 72924016, 95086728, 122717140, 156881256, 198802766, 249880274, 311704608, 386077910
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    U[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[(n+k)/#, n/#]/(n+k) &];
    a[1] = 2; a[n_] := 2*Sum[ U[i, n*(10 - i)], {i, 0, 10}];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    \\ here U is A241926
    U(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial((n+k)/d, n/d)/(n+k))}
    a(n)={2*if(n<2, n==1, sum(i=0, 10, U(i,n*(10-i))))} \\ Andrew Howroyd, Jan 09 2018

Formula

a(n) = 2*Sum_{i=0..10} A241926(i, n*(10-i)) for n > 1. - Andrew Howroyd, Jan 09 2018
G.f.: 2*x*(1 + 763*x + 905*x^2 + 1871*x^3 + 2142*x^4 + 2318*x^5 + 2333*x^6 + 1022*x^7 + 602*x^8 - 348*x^9 - 1422*x^10 - 1599*x^11 - 2949*x^12 - 3041*x^13 - 2413*x^14 - 2329*x^15 - 316*x^16 - 538*x^17 + 175*x^18 + 703*x^19 + 562*x^20 + 1446*x^21 + 852*x^22 + 147*x^23 + 48*x^24 - 646*x^25 - 6*x^26 + 224*x^27 + 16*x^28 + 184*x^29 - 310*x^30 + 107*x^31) / ((1 - x)^9*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^3*(1 + x^3 + x^6)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) (conjectured). - Colin Barker, Jan 09 2018

Extensions

Terms a(6) and beyond from Lars Blomberg, Jan 09 2018

A347971 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_4)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 12, 31, 12, 1, 1, 19, 111, 111, 19, 1, 1, 29, 361, 964, 361, 29, 1, 1, 41, 1068, 8042, 8042, 1068, 41, 1, 1, 56, 2954, 64674, 205065, 64674, 2954, 56, 1, 1, 75, 7681, 492387, 5402621, 5402621, 492387, 7681, 75, 1, 1, 97, 18880, 3507681, 137287827
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
Regarding the formula for column k = 1, note that A241926(q - 1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.

Examples

			Triangle begins:
  k:  0    1    2    3    4    5    6
      -------------------------------
n=0:  1
n=1:  1    1
n=2:  1    3    1
n=3:  1    7    7    1
n=4:  1   12   31   12    1
n=5:  1   19  111  111   19    1
n=6:  1   29  361  964  361   29    1
There are 5 = A022168(2, 1) one-dimensional subspaces in (F_4)^2, namely, those generated by vectors (0, 1), (1, 0), (1, 1), (1, x), and (1, x + 1), where F_4 = F_2[x] / (x^2 + x + 1). The coordinate swap identifies the first two on the one hand and the last two on the other, while <(1, 1)> is invariant. Hence, T(2, 1) = 3.
		

Crossrefs

Formula

T(n, 1) = T(n - 1, 1) + A007997(n + 5).

A347972 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_5)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 19, 56, 19, 1, 1, 33, 289, 289, 33, 1, 1, 55, 1358, 4836, 1358, 55, 1, 1, 85, 5771, 80605, 80605, 5771, 85, 1, 1, 128, 22594, 1271870, 5525686, 1271870, 22594, 128, 1, 1, 183, 81802, 18478460, 372302962, 372302962, 18478460, 81802, 183, 1
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
Regarding the formula for column k = 1, note that A241926(q - 1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.

Examples

			Triangle begins:
  k:  0    1    2    3    4    5    6
      -------------------------------
n=0:  1
n=1:  1    1
n=2:  1    4    1
n=3:  1    9    9    1
n=4:  1   19   56   19    1
n=5:  1   33  289  289   33    1
n=6:  1   55 1358 4836 1358   55    1
There are 6 = A022169(2, 1) one-dimensional subspaces in (F_5)^2. By coordinate swap, <(0, 1)> is identified with <(1, 0)> and <(1, 2)> with <(1, 3)>, while <(1, 1)> and <(1, 4)> rest invariant. Hence, T(2, 1) = 4.
		

Crossrefs

Formula

T(n, 1) = T(n - 1, 1) + A008610(n).

A347973 Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_7)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 162, 37, 1, 1, 79, 1538, 1538, 79, 1, 1, 159, 13237, 74830, 13237, 159, 1, 1, 291, 102019, 3546909, 3546909, 102019, 291, 1, 1, 508, 708712, 153181682, 1010416196, 153181682, 708712, 508, 1, 1, 843, 4473998, 5954653026, 267444866627
Offset: 0

Views

Author

Álvar Ibeas, Sep 21 2021

Keywords

Comments

Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
Regarding the formula for column k = 1, note that A241926(q - 1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.

Examples

			Triangle begins:
  k:  0    1    2    3    4    5
      --------------------------
n=0:  1
n=1:  1    1
n=2:  1    5    1
n=3:  1   15   15    1
n=4:  1   37  162   37    1
n=5:  1   79 1538 1538   79    1
There are 8 = A022171(2, 1) one-dimensional subspaces in (F_7)^2. Two of them (<(1, 1)> and <(1, 6)>) are invariant by coordinate swap, while the rest are grouped in orbits of size two. Hence, T(2, 1) = 5.
		

Crossrefs

Formula

T(n, 1) = T(n - 1, 1) + A032191(n + 6).
Showing 1-10 of 13 results. Next