cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241927 Smallest k^2>=1 such that n-k^2 is semiprime p*q in Fermi-Dirac arithmetic (A176525) with additional requirement that, if n is a square, then p and q are of the same parity; or a(n)=2 if there is no such k^2.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 4, 1, 1, 9, 4, 1, 2, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 9, 4, 4, 9, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 9, 1, 1, 9, 4, 4, 1, 1, 1, 1, 4, 4, 1, 1, 9, 4, 4, 9, 1, 1, 1, 1, 4, 4, 4, 25, 1, 4, 9, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 4, 4, 4, 25
Offset: 1

Views

Author

Vladimir Shevelev, May 02 2014

Keywords

Comments

A semiprime in Fermi-Dirac arithmetic is a product of two distinct terms of A050376, or, equivalently, an infinitary semiprime. The conjecture that every even number>=4 is a sum of two A050376 terms is a weaker form of the Goldbach conjecture; as such, it is natural to refer to it as a Goldbach conjecture in Fermi-Dirac arithmetic (FDGC).
Let us prove that the condition {a(m^2) differs from 2} is equivalent to the FDGC.
Indeed, from the FDGC for a perfect square n>=4, we have 2*sqrt(n)=p+q (pA050376 terms of the same parity). Thus n=((p+q)/2)^2 and n-((p-q)/2)^2=p*q is Fermi-Dirac semiprime. Hence, a(n)>=1 is a square not exceeding ((p-q)/2)^2. Thus the condition {a(m^2) differs from 2} is necessary for the truth of the FDGC.
Let us prove that the condition {a(m^2) differs from 2} is also sufficient. Indeed, a(m^2)-k^2 = p*q, where, say, pA050376, and p,q are of the same parity. If p,q are primes, then the proof repeats one in A241922. Let, e.g., p=s^2A050376). Consider two principal cases: 1) m-k = s, m+k = s*q; 2) m-k = s^2, m+k = q. In 1) k=m-s, in 2) k=m-s^2. In view of the minimality of k, we should accept 2) and thus m-k=p, m+k=q. So, 2*m=p+q as the FDGC requires.
The sequence of numbers n for which a(n)=2 begins 1, 2, 3, 4, 5, 6, 8, 20, ... (A241947).

Examples

			a(17)=9, since 9 is the smallest square such that 17-9 = 8 = 2*4 is a Fermi-Dirac semiprime.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).

Crossrefs