A256596 a(n) is the number of iterations of the map x->sigma(x) when starting from n before arriving at a number with more than one ancestor, with a(1)=0 and where sigma is the sum of divisors.
0, 6, 5, 4, 2, 1, 3, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
For n=2, the repeated map gives 2 -> 3 -> 4 -> 7 -> 8 -> 15 -> 24 where 24 is the first fork with sigma(15)=sigma(23)=24, so with 6 iterations starting from 2 we have a(2)=6, a(3)=5, a(4)=4, a(7)=3, a(8)=2, and a(15)=1.
Links
- G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
Programs
-
PARI
isfork(n) = {my(nba = 0); for (i=2, n-1, if (sigma(i) == n, nba++); if (nba > 1, return (1)););} a(n) = {if (n==1, return (0)); my(nbit = 0); ok = 0; while (! ok, newn = sigma(n); nbit++; ok = isfork(newn); n = newn;); nbit;}
Comments