cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A266380 Decimal representation of the n-th iteration of the "Rule 21" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 0, 127, 0, 2047, 0, 32767, 0, 524287, 0, 8388607, 0, 134217727, 0, 2147483647, 0, 34359738367, 0, 549755813887, 0, 8796093022207, 0, 140737488355327, 0, 2251799813685247, 0, 36028797018963967, 0, 576460752303423487, 0, 9223372036854775807, 0
Offset: 0

Views

Author

Robert Price, Dec 28 2015

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A241955: a(2*n+1) for n>0.
Essentially the same as A266324 and A266218.

Programs

  • Magma
    [n le 1 select 3^n else (1-(-1)^n)*(4*16^Floor(n/2)-1/2): n in [0..40]]; // Bruno Berselli, Dec 29 2015
    
  • Mathematica
    rule=21; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
  • Python
    print([(2*4**n - 1)*(n%2) + 0**n - 4*0**abs(n-1) for n in range(50)]) # Karl V. Keller, Jr., Sep 03 2021

Formula

From Colin Barker, Dec 29 2015 and Apr 15 2019: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>5.
G.f.: (1 + 3*x - 17*x^2 + 76*x^3 + 16*x^4 - 64*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)). (End)
a(n) = (1 - (-1)^n)*(4*16^floor(n/2) - 1/2) for n>1. - Bruno Berselli, Dec 29 2015
a(n) = (2*4^n - 1)*(n mod 2) + 0^n - 4*0^abs(n-1). - Karl V. Keller, Jr., Sep 03 2021

A266436 Decimal representation of the n-th iteration of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 7, 0, 127, 0, 2047, 0, 32767, 0, 524287, 0, 8388607, 0, 134217727, 0, 2147483647, 0, 34359738367, 0, 549755813887, 0, 8796093022207, 0, 140737488355327, 0, 2251799813685247, 0, 36028797018963967, 0, 576460752303423487, 0, 9223372036854775807, 0
Offset: 0

Views

Author

Robert Price, Dec 29 2015

Keywords

Comments

With the exception of a(1) the same as A266380, A266324 and A266218. - R. J. Mathar, Jan 10 2016

Crossrefs

Cf. A241955, A266434, A266435 (binary).

Programs

  • Mathematica
    rule=23; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)
  • Python
    print([(2*4**n-1)*(n%2) + 0**n for n in range(33)]) # Karl V. Keller, Jr., Jul 06 2021

Formula

From Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = ((-1)^n+2^(2*n+1)-(-1)^n*2^(2*n+1)-1)/2 for n>0.
a(n) = 17*a(n-2)-16*a(n-4) for n>4.
G.f.: (1+7*x-17*x^2+8*x^3+16*x^4) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
a(n) = (2*4^n-1)*(n mod 2) + 0^n. - Karl V. Keller, Jr., Jul 06 2021
Showing 1-2 of 2 results.