A241964 T(n,k)=Number of length n+3 0..k arrays with no consecutive four elements summing to more than 2*k.
11, 50, 19, 150, 124, 33, 355, 486, 311, 57, 721, 1421, 1597, 775, 97, 1316, 3437, 5778, 5211, 1895, 166, 2220, 7280, 16660, 23320, 16649, 4663, 285, 3525, 13980, 40978, 80132, 92037, 53553, 11518, 489, 5335, 24897, 89622, 228826, 376559, 365810
Offset: 1
Examples
Some solutions for n=4 k=4 ..0....2....0....4....4....4....3....0....4....2....2....3....2....0....3....0 ..3....2....4....2....3....0....3....0....1....3....2....1....4....2....4....0 ..2....1....1....0....0....0....0....3....0....0....1....0....0....1....0....2 ..0....3....0....1....0....2....2....1....2....1....2....0....2....3....0....1 ..0....0....0....2....0....3....0....1....2....0....2....1....0....1....0....2 ..1....0....0....1....0....0....3....1....4....1....2....3....3....1....2....0 ..3....3....0....4....3....2....3....4....0....0....2....0....3....1....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-4) -a(n-6)
k=2: [order 17]
k=3: [order 44]
k=4: [order 85]
Empirical for row n:
n=1: a(n) = (1/2)*n^4 + (7/3)*n^3 + 4*n^2 + (19/6)*n + 1
n=2: a(n) = (23/60)*n^5 + (9/4)*n^4 + (21/4)*n^3 + (25/4)*n^2 + (58/15)*n + 1
n=3: [polynomial of degree 6]
n=4: [polynomial of degree 7]
n=5: [polynomial of degree 8]
n=6: [polynomial of degree 9]
n=7: [polynomial of degree 10]
Comments