cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A241960 Number of length n+3 0..4 arrays with no consecutive four elements summing to more than 2*4.

Original entry on oeis.org

355, 1421, 5778, 23320, 92037, 365810, 1460409, 5830838, 23237977, 92595629, 369142639, 1471836335, 5867774115, 23391443650, 93250841634, 371756884287, 1482053418845, 5908333573340, 23554074220207, 93900552089203
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Comments

Column 4 of A241964

Examples

			Some solutions for n=4
..3....1....1....3....3....4....0....2....1....1....0....1....2....1....2....2
..1....1....0....3....2....1....0....4....1....3....2....4....1....1....3....0
..0....1....0....0....2....1....1....2....1....3....0....2....2....0....0....2
..3....0....2....1....1....1....4....0....2....1....3....0....0....2....0....1
..0....4....0....3....1....0....2....2....2....1....1....2....0....0....0....4
..3....0....2....0....2....0....0....3....1....3....3....0....4....3....3....0
..0....2....4....4....0....1....0....3....3....1....0....4....0....1....4....3
		

Formula

Empirical recurrence of order 85 (see link above)

A241961 Number of length n+3 0..5 arrays with no consecutive four elements summing to more than 2*5.

Original entry on oeis.org

721, 3437, 16660, 80132, 376559, 1782453, 8476317, 40313706, 191370192, 908268343, 4312922647, 20483132941, 97267496309, 461856616822, 2193101268453, 10414092378458, 49451882143389, 234822848509532, 1115058584108581
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Comments

Column 5 of A241964.

Examples

			Some solutions for n=4
..2....2....1....3....1....4....1....0....5....1....2....1....1....3....3....2
..1....4....4....3....1....1....5....3....3....2....0....3....1....3....4....2
..3....1....3....2....4....3....3....3....1....0....2....2....2....0....1....2
..4....0....1....1....4....1....1....0....1....4....1....0....2....1....1....1
..0....2....0....1....1....4....1....2....4....2....0....1....0....4....0....2
..0....3....5....0....0....1....0....2....3....1....0....1....5....2....1....3
..5....4....2....2....2....0....5....1....0....1....2....1....2....2....4....4
		

Crossrefs

Cf. A241964.

A241962 Number of length n+3 0..6 arrays with no consecutive four elements summing to more than 2*6.

Original entry on oeis.org

1316, 7280, 40978, 228826, 1247602, 6853011, 37822419, 208778442, 1150195313, 6335359100, 34913522464, 192436464511, 1060537739121, 5844288421834, 32206928983867, 177491988769402, 978153244754765, 5390524419041649
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Comments

Column 6 of A241964

Examples

			Some solutions for n=3
..4....1....3....4....1....3....4....6....0....1....3....2....3....1....1....0
..3....5....1....3....2....0....1....1....4....4....0....5....6....4....2....3
..2....2....5....4....3....2....0....5....1....0....2....0....0....0....0....2
..2....3....3....0....5....3....1....0....0....1....1....2....0....0....1....0
..3....1....0....4....2....4....0....0....0....5....3....2....4....4....5....0
..2....3....4....0....0....3....1....4....1....4....2....4....3....4....0....5
		

A241963 Number of length n+3 0..7 arrays with no consecutive four elements summing to more than 2*7.

Original entry on oeis.org

2220, 13980, 89622, 569874, 3536286, 22111157, 138925925, 873035589, 5475318946, 34331845408, 215383294448, 1351453881412, 8478796110164, 53190349676453, 333690439881015, 2093470677473842, 13133749568417338, 82396056288048569
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Comments

Column 7 of A241964

Examples

			Some solutions for n=3
..7....3....4....1....2....2....3....5....2....2....7....2....4....4....2....3
..2....2....4....1....0....3....5....2....0....0....5....2....0....0....1....2
..2....6....0....3....7....0....0....3....0....6....0....3....4....5....5....2
..1....0....6....2....0....4....0....0....5....0....0....0....2....0....0....0
..7....5....2....0....0....3....3....3....3....4....0....7....3....1....3....7
..4....2....3....4....1....6....0....5....1....3....3....2....4....6....4....4
		

A241965 Number of length 2+3 0..n arrays with no consecutive four elements summing to more than 2*n.

Original entry on oeis.org

19, 124, 486, 1421, 3437, 7280, 13980, 24897, 41767, 66748, 102466, 152061, 219233, 308288, 424184, 572577, 759867, 993244, 1280734, 1631245, 2054613, 2561648, 3164180, 3875105, 4708431, 5679324, 6804154, 8100541, 9587401, 11284992
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Examples

			Some solutions for n=4:
..2....1....1....1....1....0....0....3....0....1....4....2....4....2....1....4
..0....2....0....2....1....4....0....3....0....0....3....1....0....0....0....4
..2....1....0....3....0....2....2....0....4....3....0....1....2....1....0....0
..1....0....2....1....2....2....2....1....3....2....0....4....0....4....2....0
..1....1....2....2....4....0....4....3....1....0....0....2....0....2....0....3
		

Crossrefs

Row 2 of A241964.

Formula

Empirical: a(n) = (23/60)*n^5 + (9/4)*n^4 + (21/4)*n^3 + (25/4)*n^2 + (58/15)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(19 + 10*x + 27*x^2 - 15*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A241966 Number of length 3+3 0..n arrays with no consecutive four elements summing to more than 2*n.

Original entry on oeis.org

33, 311, 1597, 5778, 16660, 40978, 89622, 179079, 333091, 584529, 977483, 1569568, 2434446, 3664564, 5374108, 7702173, 10816149, 14915323, 20234697, 27049022, 35677048, 46485990, 59896210, 76386115, 96497271, 120839733, 150097591
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Examples

			Some solutions for n=4:
..4....1....0....3....2....1....4....1....1....2....3....0....4....3....2....0
..3....0....4....4....0....1....0....4....0....4....2....4....3....1....0....3
..1....0....0....0....0....1....0....1....0....0....2....0....1....3....2....4
..0....1....0....1....3....0....0....0....2....0....1....3....0....1....0....1
..4....4....0....3....1....3....1....3....3....0....0....0....3....1....4....0
..1....2....0....3....1....0....0....2....2....4....2....3....2....0....1....3
		

Crossrefs

Row 3 of A241964.

Formula

Empirical: a(n) = (3/10)*n^6 + (127/60)*n^5 + (149/24)*n^4 + (59/6)*n^3 + (1079/120)*n^2 + (91/20)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(33 + 80*x + 113*x^2 - 25*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A241967 Number of length 4+3 0..n arrays with no consecutive four elements summing to more than 2*n.

Original entry on oeis.org

57, 775, 5211, 23320, 80132, 228826, 569874, 1277427, 2634115, 5075433, 9244885, 16061058, 26797798, 43178660, 67486804, 102691509, 152592477, 221983099, 316833855, 444497020, 613933848, 835965406, 1123548230, 1492075975
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Examples

			Some solutions for n=4:
..1....1....2....0....3....2....4....4....4....4....0....0....1....0....0....1
..0....4....1....2....1....0....0....1....1....0....1....0....1....1....3....1
..0....0....4....0....0....4....3....3....1....3....0....1....3....3....3....3
..2....2....0....3....4....2....1....0....2....1....4....0....2....2....0....3
..1....0....1....1....0....1....2....1....4....3....2....4....1....0....0....1
..0....4....2....3....2....1....0....3....0....1....0....1....0....2....3....0
..0....2....2....1....1....2....0....0....2....0....2....3....4....2....2....3
		

Crossrefs

Row 4 of A241964.

Formula

Empirical: a(n) = (293/1260)*n^7 + (691/360)*n^6 + (2443/360)*n^5 + (121/9)*n^4 + (5857/360)*n^3 + (4369/360)*n^2 + (2189/420)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(57 + 319*x + 607*x^2 + 140*x^3 + 70*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A241968 Number of length 5+3 0..n arrays with no consecutive four elements summing to more than 2*n.

Original entry on oeis.org

97, 1895, 16649, 92037, 376559, 1247602, 3536286, 8889273, 20314789, 42967177, 85231367, 160175717, 287448747, 495702356, 825631180, 1333724817, 2096836713, 3217680571, 4831372213, 7113141893, 10287349127, 14637939174, 20520487370
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Examples

			Some solutions for n=4:
..1....0....1....3....3....1....2....4....0....4....2....4....3....2....1....2
..2....2....2....0....0....4....2....2....2....2....1....2....0....0....1....3
..0....0....0....3....2....2....0....0....1....0....0....0....0....0....1....1
..0....1....4....2....3....1....4....2....4....0....1....2....0....2....1....1
..2....0....1....1....0....0....1....0....0....4....2....1....3....2....1....3
..0....4....3....1....3....4....0....2....0....0....0....2....2....0....3....2
..4....0....0....1....2....2....3....0....2....2....4....0....2....3....3....0
..2....0....0....3....0....0....3....4....3....2....1....0....1....1....0....3
		

Crossrefs

Row 5 of A241964.

Formula

Empirical: a(n) = (589/3360)*n^8 + (349/210)*n^7 + (2483/360)*n^6 + (1317/80)*n^5 + (35819/1440)*n^4 + (1963/80)*n^3 + (19597/1260)*n^2 + (613/105)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(97 + 1022*x + 3086*x^2 + 2268*x^3 + 632*x^4 - 65*x^5 + 36*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A241969 Number of length 6+3 0..n arrays with no consecutive four elements summing to more than 2*n.

Original entry on oeis.org

166, 4663, 53553, 365810, 1782453, 6853011, 22111157, 62336336, 157897575, 366623400, 792037896, 1610247431, 3108255424, 5737023770, 10183189142, 17463980371, 29050569460, 47025823517, 74283207995, 114774423104
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Comments

Row 6 of A241964

Examples

			Some solutions for n=3
..2....1....2....2....0....0....0....1....3....0....0....2....0....3....0....2
..0....1....1....1....3....1....2....1....0....1....3....1....2....2....1....2
..0....3....2....0....1....0....2....2....0....3....0....1....0....0....0....0
..2....1....0....2....1....3....1....2....1....0....1....2....1....1....0....1
..3....1....1....0....1....0....0....1....1....2....1....0....0....0....1....0
..0....0....2....1....1....1....2....0....0....0....3....2....0....2....0....3
..1....2....1....0....3....1....1....0....0....3....1....1....2....0....0....1
..2....0....2....2....0....1....0....2....2....0....0....0....0....2....2....1
..1....2....0....2....0....2....1....3....1....3....2....2....1....0....0....0
		

Formula

Empirical: a(n) = (24187/181440)*n^9 + (57493/40320)*n^8 + (12829/1890)*n^7 + (54583/2880)*n^6 + (296887/8640)*n^5 + (242891/5760)*n^4 + (3196213/90720)*n^3 + (196087/10080)*n^2 + (16343/2520)*n + 1

A241970 Number of length 7+3 0..n arrays with no consecutive four elements summing to more than 2*n.

Original entry on oeis.org

285, 11518, 172980, 1460409, 8476317, 37822419, 138925925, 439298830, 1233421948, 3144133223, 7397932763, 16271365032, 33784971650, 66744596242, 126257435694, 229882539967, 404612835239, 690928552540, 1148210556166
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Comments

Row 7 of A241964

Examples

			Some solutions for n=3
..2....2....2....0....0....2....0....0....2....2....2....0....0....0....0....0
..1....0....3....0....3....1....2....2....0....2....1....0....3....1....0....1
..1....3....0....1....0....1....1....0....1....0....0....0....0....2....0....3
..1....0....0....0....0....1....0....1....3....0....3....2....1....0....2....1
..3....1....1....1....2....2....1....0....1....1....1....0....2....1....3....0
..1....0....0....0....0....2....3....2....0....1....0....2....1....1....0....0
..1....1....0....0....1....0....0....1....1....1....2....1....0....0....1....0
..1....1....2....1....0....1....2....2....2....0....0....2....1....1....1....2
..1....1....2....0....2....3....0....0....1....3....3....1....1....2....3....0
..1....1....0....0....1....0....1....2....1....0....0....1....3....3....1....0
		

Formula

Empirical: a(n) = (1057/10368)*n^10 + (16313/13440)*n^9 + (787993/120960)*n^8 + (139919/6720)*n^7 + (760961/17280)*n^6 + (124127/1920)*n^5 + (3473863/51840)*n^4 + (20441/420)*n^3 + (240259/10080)*n^2 + (2001/280)*n + 1
Showing 1-10 of 10 results.