A253016 Numbers k such that 11^phi(k) == 1 (mod k^2), where phi(k) = A000010(k).
71, 142, 284, 355, 497, 710, 994, 1420, 1491, 1988, 2485, 2840, 2982, 3976, 4970, 5680, 5964, 7455, 9940, 11928, 14910, 19880, 23856, 29820, 39760, 59640, 79520, 119280, 238560, 477120
Offset: 1
Keywords
Links
- T. Agoh, K. Dilcher and L. Skula, Fermat Quotients for Composite Moduli, J. Num. Theory, Vol. 66, Issue 1 (1997), 29-50.
Programs
-
Maple
select(t -> 11 &^ numtheory:-phi(t) mod t^2 = 1, [$1..10^6]); # Robert Israel, Dec 30 2014
-
Mathematica
a253016[n_] := Select[Range[n], PowerMod[11,EulerPhi[#], #^2] == 1 &]; a253016[500000] (* Michael De Vlieger, Dec 29 2014; modified by Robert G. Wilson v, Jan 18 2015 *)
-
PARI
for(n=2, 1e9, if(Mod(11, n^2)^(eulerphi(n))==1, print1(n, ", ")))
Comments