A242025 Primes of the form R = 2^k-1+(2^k-2)/(2^(p-k)-1), where p are Mersenne prime exponents listed in A000043.
5, 17, 29, 41, 2729, 8737, 65537, 74897, 174761, 715827881, 153722867280912929, 302379100949042568368129
Offset: 1
Examples
For given p = A000043(n), the following k yield a prime R and an associated (primitive) weird number W = 2^(k-1)*(2^p-1)*R in A258882 c A002975 c A006037: For p = 2, no k yields a prime R = 2^k-1+(2^k-2)/(2^(p-k)-1). For p = 3, k = 2 yields R = 5 and the (smallest) weird number W = 70 = A006037(1). For p = 5, k = 4 yields R = 29 = a(3) and W = 7192 = A258882(3). For p = 7, k = 4 yields R = 17 = a(2) and W = 17272 = A258882(7), and k = 5 yields R = 41 = a(4) and W = 83312 = A258882(9). For p = 13, k = 11 yields R = 2729 = a(5) and W = 22889716736 = A258882(288) For p = 17, k = 13 yields R = 8737 = a(6) and W = 4690605371392 = A258882(1203). For p = 19, k = 16 yields R = 74897 = a(8), W = 1286718208049152 = A258882(7154), and k = 17 yields R = 174761 = a(9), W = 6004730783793152 = A258882(11466). For p = 31, k = 16 yields R = 65537 = a(7) (smaller than both R's for p = 19), and k = 29 yields R = 715827881 = a(10). For p = 61, only k = 57 yields a prime R = 153722867280912929 = a(11). For p = 89, only k = 78 yields a prime R = 302379100949042568368129 = a(12). For p = 107 through p = 86243, no k yields a prime R. For p = 107 through p = 3021377, no k yields a prime R. - _Robert Price_, Sep 04 2019
Links
- M. F. Hasler, Table of n, a(n) for n = 1..12
- CWU press release, CWU Math Students Break World Record for Largest Weird Number, Dec. 4, 2013.
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
Crossrefs
Programs
-
Mathematica
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609}; lst = {}; For[i = 1, i <= Length[A000043], i++, p = A000043[[i]]; For[k = 1, k < p, k++, r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1); If[! IntegerQ[r], Continue[]]; If[PrimeQ[r], AppendTo[lst, r]]]]; Union[lst] (* Robert Price, Sep 04 2019 *)
Comments