A242039 List of integers b such that (a1,b,c1) and (a2,b,c2) are primitive Eisenstein triples, max(a1,b,c1,a2,c2)=b, and a1,c1,a3,c3 are distinct.
280, 1144, 1155, 1680, 1768, 1976, 2145, 2584, 2805, 3003, 3128, 3315, 3360, 3400, 3496, 3705, 3800, 4095, 4600, 4845, 5005, 5280, 5336, 5355, 5704, 5720, 5800, 5865, 5985, 6160, 6200, 6240, 6545, 6555, 6783, 6864, 7192, 7280, 7315, 7400, 7735, 8120, 8265, 8584, 8645, 8680, 8835, 8855, 9176, 9177, 9240, 9360, 9512, 9976
Offset: 1
Keywords
Examples
280 is in the list because (93,280,247) and (19,280,271) are primitive Eisenstein triples and 280 is the largest side and no other side is equal. Consider (3,8,7) and (5,8,7), 8 is not in the list because 7 appear in both triple.
Programs
-
Mathematica
max = 2000; data = Do[Sqrt[-3 a^2 + 4 c^2] // If[IntegerQ[#] && GCD[a, c] == 1, {a, (a + #)/2, c} // Sow] &, {a, max}, {c, Sqrt[3]/2 a // Ceiling, a - 1}] // Reap // Last // Last; Select[data[[;; , 1]] // Tally, #[[2]] > 1 &][[;; , 1]]
Comments