cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242065 Smallest k such that the union of {A242059(i): 1 <= i <= k} and {A242060(i): 1 <= i <= k} includes all primes {5, ..., prime(n)}.

Original entry on oeis.org

2, 3, 4, 8, 8, 17, 17, 17, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 179, 179, 179, 179, 179, 179, 179, 179, 264, 264, 264, 319, 319, 319, 319, 365, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 4372, 4372, 4372, 4372, 4372, 15504, 15504
Offset: 3

Views

Author

Vladimir Shevelev, Aug 13 2014

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];(*least prime factor*)
    lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]];
    A242059=Map[lpf3[#-1]&,Select[Range[4,100000,2],lpf3[#-1]A242057*)];
    A242060=Map[lpf3[#-3]&,Select[Range[4,100000,2],lpf3[#-1]>lpf3[#-3]&](*A242058*)];
    pos={};NestWhile[#+1&,3,(AppendTo[pos,Min[Position[A242059,Prime[#],1,1],Position[A242060,Prime[#],1,1]/.{}->0]];!Last[pos]==0)&];
    A242065=Rest[FoldList[Max,-Infinity,Flatten[pos]]] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 14 2014