cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242074 Numbers n such that n^2 - 1 is the product of four distinct Fibonacci numbers greater than 1.

Original entry on oeis.org

25, 41, 64, 103, 131, 169, 271, 274, 281, 441, 713, 901, 1156, 1871, 3025, 4894, 7921, 12817, 20736, 21319, 33551, 54289, 87842, 142129, 229969, 372100, 602071, 974169, 1576238, 2550409, 4126649, 6677056, 10803703, 17480761, 28284466, 45765225, 74049689
Offset: 1

Views

Author

Michel Lagneau, Aug 14 2014

Keywords

Comments

The sequence contains the squares of the Fibonacci numbers (A007598(n) for n >=5).
Proof:
Let F(m) be the m-th Fibonacci number. If n = F(m)^2, n^2 - 1 = F(m)^4-1.
For m > 1, F(m)^4 - 1 = F(m-2)*F(m-1)*F(m+1)*F(m+2) with the property F(m-2) + F(m-1) + F(m+1) + F(m+2) = F(m) + F(m+3) = 2*F(m+2). (See A244855.)
F(m)^2 - 1 = F(m-1)*F(m+1) if m odd, and F(m)^2 - 1 = F(m-2)*F(m+2)if m even;
F(m)^2 + 1 = F(m-2)*F(m+2) if m odd, and F(m)^2 + 1 = F(m-1)*F(m+1) if m even, hence the product (F(m)^2 - 1)*(F(m)^2 + 1) = F(m-2)*F(m-1)*F(m+1)*F(m+2).
The primes of the sequence are 41, 103, 131, 271, 281, 1871, 21319, ...
The composites (nonsquares) of the sequence are 274, 713, 901, 4894, 12817, 33551, 87842, ...

Examples

			25^2 - 1 = 2*3*8*13 = F(5 - 2)*F(5 - 1)*F(5 + 1)*F(5 + 2) where F(5) = 5;
41^2 - 1 = 2*5*8*21;
64^2 - 1 = 3*5*13*21 = F(6 - 2)*F(6 - 1)*F(6 + 1)*F(6 + 2) where F(6) = 8;
103^2 - 1 = 3*8*13*34;
131^2 - 1 = 3*8*13*55;
169^2 - 1 = 5*8*21*34 = F(7 - 2)*F(7 - 1)*F(7 + 1)*F(7 + 2) where F(7) = 13;
271^2 - 1 = 3*5*34*144;
274^2 - 1 = 5*13*21*55;
281^2 - 1 = 2*5*8*987;
441^2 - 1 = 8*13*34*55 = F(8 - 2)*F(8 - 1)*F(8 + 1)*F(8 + 2) where F(8) = 21.
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):with(numtheory):nn:=100:lst:={}:T:=array(1..nn):
       for n from 1 to nn do:
        T[n]:=fibonacci(n):
       od:
         for p from 1 to nn-1 do:
           for q from p+1 to nn-1 do:
              for r from q+1 to nn-1 do:
                for s from r+1 to nn-1 do:
               f:=T[p]*T[q]*T[r]*T[s]+1:x:=sqrt(f):
               if x=floor(x)and T[p]<>1
               then
               lst:=lst union {x}:
               else
               fi:
              od:
           od:
         od:
        od:
         print(lst):