A242074 Numbers n such that n^2 - 1 is the product of four distinct Fibonacci numbers greater than 1.
25, 41, 64, 103, 131, 169, 271, 274, 281, 441, 713, 901, 1156, 1871, 3025, 4894, 7921, 12817, 20736, 21319, 33551, 54289, 87842, 142129, 229969, 372100, 602071, 974169, 1576238, 2550409, 4126649, 6677056, 10803703, 17480761, 28284466, 45765225, 74049689
Offset: 1
Keywords
Examples
25^2 - 1 = 2*3*8*13 = F(5 - 2)*F(5 - 1)*F(5 + 1)*F(5 + 2) where F(5) = 5; 41^2 - 1 = 2*5*8*21; 64^2 - 1 = 3*5*13*21 = F(6 - 2)*F(6 - 1)*F(6 + 1)*F(6 + 2) where F(6) = 8; 103^2 - 1 = 3*8*13*34; 131^2 - 1 = 3*8*13*55; 169^2 - 1 = 5*8*21*34 = F(7 - 2)*F(7 - 1)*F(7 + 1)*F(7 + 2) where F(7) = 13; 271^2 - 1 = 3*5*34*144; 274^2 - 1 = 5*13*21*55; 281^2 - 1 = 2*5*8*987; 441^2 - 1 = 8*13*34*55 = F(8 - 2)*F(8 - 1)*F(8 + 1)*F(8 + 2) where F(8) = 21.
Programs
-
Maple
with(combinat,fibonacci):with(numtheory):nn:=100:lst:={}:T:=array(1..nn): for n from 1 to nn do: T[n]:=fibonacci(n): od: for p from 1 to nn-1 do: for q from p+1 to nn-1 do: for r from q+1 to nn-1 do: for s from r+1 to nn-1 do: f:=T[p]*T[q]*T[r]*T[s]+1:x:=sqrt(f): if x=floor(x)and T[p]<>1 then lst:=lst union {x}: else fi: od: od: od: od: print(lst):
Comments