A242076 Numbers k for which (2^k + 1)/F is prime where F is a Fermat number.
3, 5, 6, 7, 11, 12, 13, 17, 19, 20, 23, 28, 31, 40, 43, 61, 79, 92, 96, 101, 104, 127, 148, 167, 191, 199, 313, 347, 356, 596, 692, 701, 1004, 1228, 1268, 1709, 2617, 3539, 3824, 5807, 10501, 10691, 11279, 12391, 14479, 42737
Offset: 1
Examples
12 is a term because (2^12 + 1)/17 = 241, a prime number.
Programs
-
Sage
def a(n): num = 2^n + 1 k = 0 while k < log(n, 2): if num % (2^(2^k) + 1) == 0 and is_prime(Integer(num/(2^(2^k)+1))): return True k = k + 1 return False # Ralf Stephan, May 15 2014
Extensions
More terms from Ralf Stephan, May 15 2014
a(40)-a(46) from Jon E. Schoenfield, Apr 14 2018
Wrong property removed by J. Lowell, Apr 14 2018
Comments