cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242093 Number A(n,k) of inequivalent n X k binary matrices, where equivalence means permutations of rows or columns or the symbol set; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 8, 8, 3, 1, 1, 3, 14, 18, 14, 3, 1, 1, 4, 20, 47, 47, 20, 4, 1, 1, 4, 30, 95, 173, 95, 30, 4, 1, 1, 5, 40, 200, 545, 545, 200, 40, 5, 1, 1, 5, 55, 367, 1682, 2812, 1682, 367, 55, 5, 1, 1, 6, 70, 674, 4745, 14386, 14386, 4745, 674, 70, 6, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2014

Keywords

Examples

			A(1,4) = 3: [0 0 0 0], [1 0 0 0], [1 1 0 0].
A(1,5) = 3: [0 0 0 0 0], [1 0 0 0 0], [1 1 0 0 0].
A(2,2) = 5:
  [0 0]  [1 0]  [1 1]  [1 0]  [1 0]
  [0 0], [0 0], [0 0], [1 0], [0 1].
A(3,2) = 8:
  [0 0]  [1 0]  [1 1]  [1 0]  [1 0]  [1 0]  [1 0]  [1 1]
  [0 0], [0 0], [0 0], [1 0], [0 1], [1 0], [0 1], [1 0].
  [0 0]  [0 0]  [0 0]  [0 0]  [0 0]  [1 0]  [1 0]  [0 0]
Square array A(n,k) begins:
  1, 1,  1,   1,    1,     1,       1,        1, ...
  1, 1,  2,   2,    3,     3,       4,        4, ...
  1, 2,  5,   8,   14,    20,      30,       40, ...
  1, 2,  8,  18,   47,    95,     200,      367, ...
  1, 3, 14,  47,  173,   545,    1682,     4745, ...
  1, 3, 20,  95,  545,  2812,   14386,    68379, ...
  1, 4, 30, 200, 1682, 14386,  126446,  1072086, ...
  1, 4, 40, 367, 4745, 68379, 1072086, 16821330, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A008619, A006918(n+1), A246148, A246149, A246150, A246151, A246152, A246153, A246154, A246155.
Main diagonal gives A091059.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    g:= proc(n, k) option remember; add(add(add(mul(mul(add(d*
          coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)*
          coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)),
          i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!,
          i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!,
          i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!,
          i=1..degree(s)), u=b(2$2)), t=b(n$2)), s=b(k$2))
        end:
    A:= (n, k)-> g(sort([n, k])[]):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten[Table[Map[ Function[p, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[Sum[Product[Product[With[{gc = GCD[i, j]* Coefficient[s, x, i]*Coefficient[t, x, j]}, If[gc == 0, 1, Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^gc]], {j, 1, Exponent[t, x]}],
    {i, Exponent[s, x]}]/Product[i^Coefficient[u, x, i]*Coefficient[u, x, i]!,
    {i, Exponent[u, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!,
    {i, Exponent[t, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!,
    {i, Exponent[s, x]}], {u, b[2, 2]}], {t, b[n, n]}], {s, b[k, k]}];
    A[n_, k_] := g @@ Sort[{n, k}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 25 2016, adapted from Maple, updated Jan 01 2021 *)