A242098 Numbers n such that the residue of n modulo floor(sqrt(n)) is prime.
11, 14, 18, 19, 22, 23, 27, 28, 32, 33, 38, 39, 41, 44, 45, 47, 51, 52, 54, 58, 59, 61, 66, 67, 69, 71, 74, 75, 77, 79, 83, 84, 86, 88, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 123, 124, 126, 128, 134, 135, 137, 139, 146, 147, 149
Offset: 1
Examples
floor(sqrt(28)) = 5. 28 modulo 5 = 3, which is prime, so 28 is in the sequence.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[200],PrimeQ[ Mod[#,Floor[Sqrt[#]]]]&] (* Harvey P. Dale, May 31 2019 *)
-
PARI
for(n=1, 10^3, if(isprime(n%sqrtint(n)), print1(n", "))) \\ Jens Kruse Andersen, Aug 16 2014
-
Python
from sympy import isprime from math import sqrt, floor from itertools import count sequence = ( for in count(1) if isprime( % floor(sqrt()))) print([next(sequence) for i in range(50)])
Extensions
Added alternative formulation in comment.
Comments