A242100 Numbers of the form m = b^i + b^j, where b > 1 and i > j > 0.
6, 10, 12, 18, 20, 24, 30, 34, 36, 40, 42, 48, 56, 66, 68, 72, 80, 84, 90, 96, 108, 110, 130, 132, 136, 144, 150, 156, 160, 182, 192, 210, 222, 240, 246, 252, 258, 260, 264, 270, 272, 288, 306, 320, 324, 342, 350, 380, 384, 392, 420, 462, 506, 514, 516, 520
Offset: 1
Keywords
Examples
a(1) = 6, since 2 = 2^2 + 2^1. a(7) = 30, since 30 = 3^3 + 3^1. a(10) = 40. a(10^2) = 1722. a(10^3) = 377610. a(10^4) = 70635620. a(10^5) = 8830078992. a(10^6) = 951958292172. a(10^7) = 97932587392010. a(10^8) = 9908034917287656. a(10^9) = 995834160614903742.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..10000
Programs
-
Smalltalk
distinctPowersWithOffset: d "Answers an array which holds the first n numbers of the form b^i + b^j + d, i>j>0, where b is any natural number > 1, d is any integer number, and n is the receiver (d=0 for this sequence). Usage: n distinctPowersWithOffset: 0 Answer: #(6 10 12 ...) [first n terms]" | n terms m | terms := SortedCollection new. n := self. m := n squared max: 20. terms := m floorDistinctPowersWithOffset: d. ^terms copyFrom: 1 to: n ---------- floorDistinctPowersWithOffset: d "Answers an array which holds the numbers < n of the form b^i + b^j + d, i>j>0, where b is any natural number > 1, d is any integer number, and n is the receiver (d=0 for this sequence). Usage: n floorDistinctPowersWithOffset: 0 Answer: #(6 10 12 18 ...) [all terms < n]" | bmax p q n m terms a | terms := OrderedCollection new. n := self. bmax := ((4 * (n - d) + 1) sqrtTruncated - 1) // 2. 2 to: bmax do: [:b | p := b * b. q := b. a := p + q + d. [a < n] whileTrue: [[q < p and: [a < n]] whileTrue: [terms add: a. q := b * q. a := p + q + d]. p := b * p. q := b. a := p + q + d]]. ^terms asSet asOrderedCollection sorted
Formula
a(n) < n^2 for n > 4.
lim a(n)/n^2 = 1, for n --> infinity.
Comments