A242106 Number T(n,k) of inequivalent n X n matrices using exactly k different symbols, where equivalence means permutations of rows or columns or the symbol set; triangle T(n,k), n>=0, 0<=k<=n^2, read by rows.
1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 17, 121, 269, 241, 100, 24, 3, 1, 0, 1, 172, 15239, 316622, 1951089, 4820228, 5769214, 3768929, 1451594, 347251, 53628, 5645, 451, 37, 3, 1, 0, 1, 2811, 10802952, 3316523460, 170309112972, 2577666563670, 15839885888526
Offset: 0
Examples
T(2,2) = 4: [1 0] [1 1] [1 0] [1 0] [0 0], [0 0], [1 0], [0 1]. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 4, 3, 1; 0, 1, 17, 121, 269, 241, 100, 24, 3, 1; 0, 1, 172, 15239, 316622, 1951089, 4820228, 5769214, 3768929, ... 0, 1, 2811, 10802952, 3316523460, 170309112972, 2577666563670, ... 0, 1, 126445, 50459558944, 382379913244053, 233995925116415261, ...
Links
- Alois P. Heinz, Rows n = 0..6, flattened
Programs
-
Maple
with(numtheory): b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {}, {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)})) end: A:= proc(n, k) option remember; add(add(add(mul(mul(add(d* coeff(u, x, d), d=divisors(ilcm(i, j)))^(igcd(i, j)* coeff(s, x, i)*coeff(t, x, j)), j=1..degree(t)), i=1..degree(s))/mul(i^coeff(u, x, i)*coeff(u, x, i)!, i=1..degree(u))/mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t))/mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s)), u=b(k$2)), t=b(n$2)), s=b(n$2)) end: T:= (n, k)-> A(n, k) -A(n, k-1): seq(seq(T(n, k), k=0..n^2), n=0..4);
-
Mathematica
Unprotect[Power]; 0^0 = 1; Protect[Power]; b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Table[Map[Function[{p}, p+j*x^i], b[n-i*j, i-1]], {j, 0, n/i}] // Flatten]]; A[n_, k_] := A[n, k] = Sum[ Sum[ Sum[ Product[ Product[ Sum[d* Coefficient[u, x, d], {d, Divisors[LCM[i, j]]}]^(GCD[i, j]*Coefficient[s, x, i] * Coefficient[t, x, j]), {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}] / Product[ i^Coefficient[u, x, i]*Coefficient[u, x, i]!, {i, 1, Exponent[u, x]}] / Product[ i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}] / Product[ i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}], {u, b[k, k]}], {t, b[n, n]}], {s, b[n, n]}]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[ Table[T[n, k], {k, 0, n^2}], {n, 0, 4}] // Flatten (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)
Comments