cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A242140 Number of length n+5 0..4 arrays with no consecutive six elements summing to more than 3*4.

Original entry on oeis.org

8688, 36224, 154647, 663395, 2837837, 12043599, 50455611, 212162746, 895579480, 3787247400, 16020690930, 67729965951, 286080148023, 1208022059263, 5102043513434, 21553426093066, 91062071731465, 384728908620213
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Comments

Column 4 of A242144

Examples

			Some solutions for n=3
..0....0....1....0....0....1....1....2....0....1....1....1....1....1....0....2
..2....3....0....3....3....4....0....2....4....1....4....2....0....1....4....0
..0....0....0....3....0....0....4....0....1....0....0....1....0....0....3....1
..0....4....1....3....2....1....3....2....1....1....3....0....0....0....0....1
..3....3....3....0....1....3....1....1....2....0....1....3....4....2....2....3
..4....1....4....1....3....0....2....2....1....1....1....3....3....0....0....2
..2....0....3....2....3....0....1....1....0....1....1....3....0....2....1....2
..3....2....0....1....2....2....1....0....0....0....2....1....0....2....1....1
		

A242141 Number of length n+5 0..5 arrays with no consecutive six elements summing to more than 3*5.

Original entry on oeis.org

25494, 126894, 647404, 3319500, 16970962, 86052208, 430518585, 2162172742, 10902502273, 55078322417, 278343334238, 1405766614019, 7093088366242, 35779370687575, 180515721830508, 910971025811519, 4597754179265792
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Comments

Column 5 of A242144

Examples

			Some solutions for n=2
..4....1....0....3....0....4....0....4....0....4....0....1....4....4....0....1
..0....1....4....0....1....3....1....0....5....0....4....0....1....0....1....1
..0....1....0....0....5....1....0....5....0....1....3....4....2....0....3....0
..0....0....1....0....3....2....2....0....4....4....4....5....4....2....3....4
..3....5....1....5....1....0....3....4....3....2....1....0....2....4....4....4
..0....1....0....5....1....0....3....1....2....4....1....1....0....1....3....2
..2....1....0....3....3....4....2....2....1....4....0....0....3....0....0....2
		

A242142 Number of length n+5 0..6 arrays with no consecutive six elements summing to more than 3*6.

Original entry on oeis.org

63490, 367358, 2180310, 13006484, 77357343, 456215409, 2653766000, 15497830900, 90878735732, 533945267676, 3138209023516, 18432820158203, 108162937167014, 634507293368503, 3722906161866317, 21849327869647678, 128247123968241090
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Comments

Column 6 of A242144

Examples

			Some solutions for n=2
..4....3....4....0....4....0....0....0....0....4....0....0....3....0....0....4
..0....0....0....4....0....2....2....2....6....0....2....4....4....0....0....0
..1....6....3....0....2....2....4....0....1....0....2....1....3....2....6....2
..5....1....1....0....1....3....5....0....2....0....2....0....1....2....5....2
..1....0....0....4....6....2....0....0....4....4....6....1....3....6....1....2
..0....0....3....6....0....2....1....4....1....2....0....2....1....4....1....5
..2....1....0....4....2....6....6....3....3....3....0....5....0....2....1....5
		

A242143 Number of length n+5 0..7 arrays with no consecutive six elements summing to more than 3*7.

Original entry on oeis.org

140148, 924300, 6256170, 42564898, 288712815, 1941492045, 12874102578, 85713766385, 573062988542, 3838977344664, 25726636932711, 172293701892093, 1152716573289716, 7709820824430357, 51576900836608142, 345127323266038809
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Comments

Column 7 of A242144

Examples

			Some solutions for n=2
..4....0....0....6....0....4....6....4....0....0....2....2....0....2....4....4
..2....4....6....2....6....0....6....2....2....6....0....0....4....0....0....4
..0....4....6....2....2....6....0....4....6....0....6....4....6....4....4....0
..2....1....0....3....4....1....0....2....2....3....1....4....2....0....0....0
..2....0....3....0....1....0....2....7....4....6....0....4....4....0....0....6
..3....0....4....6....0....6....3....1....1....5....2....7....0....5....5....0
..4....7....2....3....0....2....1....4....3....0....1....1....2....3....1....0
		

A242145 Number of length 1+5 0..n arrays with no consecutive six elements summing to more than 3*n.

Original entry on oeis.org

42, 435, 2338, 8688, 25494, 63490, 140148, 282051, 527626, 930237, 1561638, 2515786, 3913014, 5904564, 8677480, 12459861, 17526474, 24204727, 32881002, 44007348, 58108534, 75789462, 97742940, 124757815, 157727466, 197658657
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Examples

			Some solutions for n=4:
  2  4  2  3  0  2  1  1  0  2  4  0  0  0  1  3
  2  0  1  0  0  4  2  2  0  1  1  3  0  1  2  0
  1  2  1  1  4  2  1  3  1  1  1  0  0  0  3  0
  3  3  4  2  4  1  3  0  1  4  0  0  0  1  3  2
  1  2  3  3  1  1  2  4  0  2  1  2  0  2  1  1
  1  0  0  1  3  2  2  2  4  1  1  3  0  4  2  2
		

Crossrefs

Row 1 of A242144.

Formula

Empirical: a(n) = (1/2)*n^6 + (131/40)*n^5 + (71/8)*n^4 + (103/8)*n^3 + (85/8)*n^2 + (97/20)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(42 + 141*x + 175*x^2 - 13*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A242146 Number of length 2+5 0..n arrays with no consecutive six elements summing to more than 3*n.

Original entry on oeis.org

74, 1113, 7862, 36224, 126894, 367358, 924300, 2088459, 4333978, 8394287, 15356562, 26776802, 44817566, 72410412, 113445080, 172987461, 257528394, 375265333, 536418926, 753586548, 1042134830, 1420633226, 1911330660
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Examples

			Some solutions for n=4:
..2....1....4....0....2....3....1....0....3....0....1....4....0....1....0....3
..1....1....2....2....4....0....1....2....0....3....3....3....3....1....0....4
..0....3....3....1....0....2....0....3....4....4....3....2....1....3....4....0
..0....2....3....1....4....3....2....0....0....1....0....1....2....1....1....2
..0....1....0....3....1....0....4....1....3....1....0....2....0....0....0....3
..1....2....0....2....0....3....1....2....0....0....0....0....0....0....1....0
..1....0....3....2....2....1....0....2....4....0....4....1....2....2....4....1
		

Crossrefs

Row 2 of A242144.

Formula

Empirical: a(n) = (1021/2520)*n^7 + (28/9)*n^6 + (3679/360)*n^5 + (1349/72)*n^4 + (1873/90)*n^3 + (1019/72)*n^2 + (779/140)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(74 + 521*x + 1030*x^2 + 348*x^3 + 90*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A242147 Number of length 3+5 0..n arrays with no consecutive six elements summing to more than 3*n.

Original entry on oeis.org

132, 2902, 27024, 154647, 647404, 2180310, 6256170, 15876783, 36560854, 77812152, 155155078, 292868433, 527561802, 912752596, 1524615420, 2469089061, 3890540016, 5982195106, 8998569348, 13270128883, 19220442384, 27386087994
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Examples

			Some solutions for n=4:
  0  1  1  1  2  0  0  0  2  0  2  2  1  2  1  1
  2  2  2  3  0  4  2  1  3  2  2  3  2  0  2  1
  0  2  0  2  0  0  3  1  0  0  0  1  1  2  0  0
  0  0  2  3  1  2  0  0  0  1  4  3  0  1  1  4
  4  1  4  0  3  0  0  0  3  1  1  2  4  2  3  2
  4  1  0  2  1  4  3  3  3  3  1  0  2  1  2  0
  1  4  4  2  4  1  3  0  0  1  1  0  3  1  3  2
  0  2  1  1  0  0  1  3  1  0  2  0  1  1  2  1
		

Crossrefs

Row 3 of A242144.

Formula

Empirical: a(n) = (757/2240)*n^8 + (14969/5040)*n^7 + (16439/1440)*n^6 + (1133/45)*n^5 + (100771/2880)*n^4 + (22733/720)*n^3 + (92011/5040)*n^2 + (879/140)*n + 1.
Conjectures from Colin Barker, Oct 31 2018: (Start)
G.f.: x*(132 + 1714*x + 5658*x^2 + 4815*x^3 + 1309*x^4 - 30*x^5 + 36*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A242148 Number of length 4+5 0..n arrays with no consecutive six elements summing to more than 3*n.

Original entry on oeis.org

236, 7596, 93308, 663395, 3319500, 13006484, 42564898, 121330981, 310054250, 725133024, 1576001362, 3220436895, 6243597894, 11567739640, 20600804748, 35433429545, 59095358912, 95883815172, 151778022640, 234955848347
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Comments

Row 4 of A242144

Examples

			Some solutions for n=3
..0....2....0....0....2....2....3....2....2....3....3....2....2....3....1....2
..2....2....3....2....0....0....1....0....1....0....0....2....0....2....1....1
..1....0....0....0....0....0....3....1....2....0....1....3....2....0....0....0
..3....0....2....0....1....2....0....0....3....2....0....0....1....2....3....0
..0....1....0....1....3....0....0....1....0....2....2....1....0....2....3....1
..2....2....3....0....0....2....0....1....0....2....3....1....0....0....0....2
..1....1....1....3....3....1....3....2....1....2....1....0....0....2....1....0
..0....1....1....0....1....2....2....1....2....1....1....1....0....2....2....0
..0....2....1....2....0....1....0....0....2....0....0....3....2....1....0....2
		

Formula

Empirical: a(n) = (51431/181440)*n^9 + (7069/2520)*n^8 + (373229/30240)*n^7 + (763/24)*n^6 + (457907/8640)*n^5 + (1191/20)*n^4 + (2059039/45360)*n^3 + (5759/252)*n^2 + (4399/630)*n + 1

A242149 Number of length 5+5 0..n arrays with no consecutive six elements summing to more than 3*n.

Original entry on oeis.org

421, 19834, 321320, 2837837, 16970962, 77357343, 288712815, 924335053, 2621131557, 6736000381, 15956886023, 35297721979, 73650614324, 146121877010, 277441759058, 506811766161, 894639234101, 1531707118508, 2551438684546
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Comments

Row 5 of A242144

Examples

			Some solutions for n=2
..2....1....1....1....1....1....2....0....0....0....0....1....1....1....2....2
..0....0....0....0....1....2....2....1....0....0....1....1....0....1....2....0
..0....2....1....1....1....0....2....0....0....0....1....0....2....0....0....2
..1....0....1....1....0....1....0....0....2....1....1....0....0....1....1....1
..1....0....0....0....2....1....0....0....1....1....0....1....0....0....1....1
..1....1....1....0....1....0....0....1....1....0....0....0....0....1....0....0
..0....0....1....0....1....1....0....1....0....0....1....2....2....1....0....2
..0....0....0....1....1....0....1....0....1....0....0....1....0....2....0....0
..2....2....1....2....0....2....0....0....1....0....2....2....0....1....0....1
..0....1....1....1....0....1....2....2....0....1....0....0....1....1....0....0
		

Formula

Empirical: a(n) = (859693/3628800)*n^10 + (1892767/725760)*n^9 + (1563833/120960)*n^8 + (4608661/120960)*n^7 + (12804769/172800)*n^6 + (3445219/34560)*n^5 + (1069993/11340)*n^4 + (11327921/181440)*n^3 + (234169/8400)*n^2 + (2416/315)*n + 1

A242150 Number of length 6+5 0..n arrays with no consecutive six elements summing to more than 3*n.

Original entry on oeis.org

747, 51440, 1098260, 12043599, 86052208, 456215409, 1941492045, 6980495147, 21963123129, 62016006945, 160112849845, 383388390463, 860906165796, 1828944557550, 3702209669222, 7182352124565, 13418860449679, 24241936676342
Offset: 1

Views

Author

R. H. Hardin, May 05 2014

Keywords

Comments

Row 6 of A242144

Examples

			Some solutions for n=1
..0....0....1....0....0....1....1....1....1....1....0....0....1....0....1....1
..0....0....0....0....0....0....0....1....1....0....0....0....1....1....0....1
..1....0....0....0....1....0....1....0....1....0....0....0....0....0....0....1
..0....0....0....0....0....0....0....0....0....1....0....1....1....1....0....0
..0....1....0....1....1....1....0....0....0....0....0....1....0....1....0....0
..1....1....0....0....0....0....0....1....0....0....0....0....0....0....0....0
..1....0....0....0....1....0....0....1....1....0....1....1....1....0....0....0
..0....0....0....0....0....0....1....0....1....1....0....0....0....1....1....0
..0....1....0....1....0....0....0....0....1....1....1....0....0....0....0....0
..0....0....1....0....0....0....0....0....0....0....0....1....1....1....0....0
..1....1....0....1....0....1....1....0....0....1....0....1....0....1....0....0
		

Formula

Empirical: a(n) = (1956631/9979200)*n^11 + (1726129/725760)*n^10 + (9526243/725760)*n^9 + (5272471/120960)*n^8 + (19548049/201600)*n^7 + (5255677/34560)*n^6 + (124917323/725760)*n^5 + (25617881/181440)*n^4 + (75074821/907200)*n^3 + (83833/2520)*n^2 + (115589/13860)*n + 1
Showing 1-10 of 11 results. Next