A242152 Numbers n such that the sum of their unitary prime divisors divides sigma(n).
15, 24, 28, 35, 40, 42, 54, 60, 66, 95, 96, 110, 114, 117, 119, 120, 132, 135, 140, 143, 147, 168, 195, 198, 209, 224, 240, 250, 252, 258, 280, 287, 290, 315, 319, 322, 323, 360, 375, 377, 380, 384, 408, 460, 468, 470, 476, 480, 486, 496, 506, 507, 510, 520
Offset: 1
Examples
Divisors of 315 are 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315. Its unitary prime divisors are 5 and 7. Finally, sigma(315) = 624 and 624 / (5 + 7) = 52.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paolo P. Lava)
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do a:=divisors(n); b:=0; for k from 1 to nops(a) do if isprime(a[k]) then if gcd(a[k],n/a[k])=1 then b:=b+a[k]; fi; fi; od; if b>0 then if type(sigma(n)/b,integer) then print(n); fi; fi; od; end: P(10^10);
-
Mathematica
unitaryPrimeSum[1]=0; unitaryPrimeSum[n_] := Total[(f = FactorInteger[n])[[;;,1]] * (Boole[# == 1]& /@ f[[;;,2]])]; Select[Range[500], (ups = unitaryPrimeSum[#]) > 0 && Divisible[DivisorSigma[1, #], ups] &] (* Amiram Eldar, Nov 26 2019 *)
-
PARI
isok(n) = (v = sumdiv(n, d, d*isprime(d)*(gcd(d, n/d)==1))) && ! (sigma(n) % v); \\ Michel Marcus, May 05 2014