cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242152 Numbers n such that the sum of their unitary prime divisors divides sigma(n).

Original entry on oeis.org

15, 24, 28, 35, 40, 42, 54, 60, 66, 95, 96, 110, 114, 117, 119, 120, 132, 135, 140, 143, 147, 168, 195, 198, 209, 224, 240, 250, 252, 258, 280, 287, 290, 315, 319, 322, 323, 360, 375, 377, 380, 384, 408, 460, 468, 470, 476, 480, 486, 496, 506, 507, 510, 520
Offset: 1

Views

Author

Paolo P. Lava, May 05 2014

Keywords

Examples

			Divisors of 315 are 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315. Its unitary prime divisors are 5 and 7. Finally, sigma(315) = 624 and 624 / (5 + 7) = 52.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do a:=divisors(n); b:=0;
    for k from 1 to nops(a) do if isprime(a[k]) then if gcd(a[k],n/a[k])=1 then b:=b+a[k]; fi; fi; od;
    if b>0 then if type(sigma(n)/b,integer) then print(n); fi; fi; od; end: P(10^10);
  • Mathematica
    unitaryPrimeSum[1]=0; unitaryPrimeSum[n_] := Total[(f = FactorInteger[n])[[;;,1]] * (Boole[# == 1]& /@ f[[;;,2]])]; Select[Range[500], (ups = unitaryPrimeSum[#]) > 0 && Divisible[DivisorSigma[1, #], ups] &] (* Amiram Eldar, Nov 26 2019 *)
  • PARI
    isok(n) = (v = sumdiv(n, d, d*isprime(d)*(gcd(d, n/d)==1))) && ! (sigma(n) % v); \\ Michel Marcus, May 05 2014