cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A298736 a(n) = s(n) - prime(n+1)+3, where s(n) = smallest even number x > prime(n) such that the difference x-p is composite for all primes p <= prime(n).

Original entry on oeis.org

6, 10, 26, 90, 88, 84, 82, 200, 282, 280, 522, 518, 516, 512, 942, 936, 934, 928, 924, 922, 2566, 2562, 2556, 2548, 2544, 2542, 5268, 5266, 5262, 5248, 5244, 5238, 5236, 7280, 7278, 7272, 7266, 7262, 7256, 43356, 43354, 43344, 43342, 43338, 43336, 43324, 54024
Offset: 1

Views

Author

Felix Fröhlich, Jan 25 2018

Keywords

Comments

The statement "a(n) >= 0 for n >= 1" is equivalent to Goldbach's conjecture (cf. Phong, Dongdong, 2004, Theorem (a)).
Records: 6, 10, 26, 90, 200, 282, 522, 942, 2566, 5268, 7280, 43356, 54024, ..., . - Robert G. Wilson v, Feb 28 2018

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    P:= [seq(ithprime(i),i=1..N+1)]:
    s:= proc(n,k0) local k;
      for k from max(k0,P[n]+1) by 2 do
        if andmap(not(isprime), map(t -> k - t, P[1..n])) then return k
      fi
    od
    end proc:
    K[1]:= 6: A[1]:= 6:
    for n from 2 to N do
      K[n]:= s(n,K[n-1]);
      A[n]:= K[n]- P[n+1]+3;
    od:
    seq(A[n],n=1..N); # Robert Israel, Mar 01 2018
  • Mathematica
    f[n_] := Block[{k, x = 2, q = Prime@ Range@ n}, x += Mod[x, 2]; While[k = 1; While[k < n +1 && CompositeQ[x - q[[k]]], k++]; k < n +1, z = x += 2]; x - Prime[n +1] +3]; Array[f, 47] (* Robert G. Wilson v, Feb 26 2018 *)
  • PARI
    s(n) = my(p=prime(n), x); if(p==2, x=4, x=p+1); while(1, forprime(q=1, p, if(ispseudoprime(x-q), break, if(q==p, return(x)))); x=x+2)
    a(n) = s(n)-prime(n+1)+3

Formula

a(n) = A152522(n)-A000040(n+1)+3 for n > 0.
Showing 1-1 of 1 results.