cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242168 Decimal expansion of the integral of the q-Pochhammer symbol (reciprocal of the partition function) over the real interval -1 to 1.

Original entry on oeis.org

1, 2, 8, 8, 3, 0, 0, 8, 8, 8, 6, 7, 3, 9, 2, 1, 2, 3, 0, 1, 8, 0, 9, 0, 1, 4, 9, 3, 9, 3, 0, 9, 6, 3, 4, 4, 4, 2, 2, 5, 8, 7, 3, 8, 0, 7, 1, 3, 8, 7, 9, 6, 1, 9, 5, 0, 3, 2, 0, 1, 4, 9, 4, 2, 6, 9, 8, 6, 4, 4, 2, 4, 1, 8, 5, 2, 0, 4, 9, 7, 8, 8, 7, 6, 8, 2, 0, 9, 3, 4, 4, 4, 4, 1, 1, 1, 3, 3, 9, 8, 1, 3, 6, 3, 3
Offset: 1

Views

Author

William J. Keith, May 05 2014

Keywords

Comments

As a function, the q-Pochhammer symbol is an irregularly left-skewed bell curve. It has limiting value 0 at -1 and 1, and its maximum is at -0.411248... (decimal value given by A143441).

Examples

			1.2883008886739212301809014939309634442258738...
		

Crossrefs

Programs

  • Maple
    evalf(4*sqrt(3/23)*Pi * (2*sinh(sqrt(23)*Pi/6) + sqrt(2)*sinh(sqrt(23)*Pi/4)) / (2*cosh(sqrt(23)*Pi/3)-1), 120); # Vaclav Kotesovec, Jun 02 2015
  • Mathematica
    NIntegrate[QPochhammer[q, q], {q, -1, 1}, WorkingPrecision -> 45]
    RealDigits[4*Sqrt[3/23]*Pi*(2*Sinh[Sqrt[23]*Pi/6] + Sqrt[2]*Sinh[Sqrt[23]*Pi/4]) / (2*Cosh[Sqrt[23]*Pi/3]-1), 10, 105][[1]] (* Vaclav Kotesovec, Jun 02 2015 *)
  • PARI
    eta2(q)=if(q==0,1,my(p=log(10^-38)/log(abs(q)),N=floor(sqrt(2*p/3)));sum(n=-N,N,(-1)^n*q^((3*n^2-n)/2),0.))
    intnum(q=-.99999,.99999,eta2(q)) \\ Bill Allombert, May 06 2014

Formula

Equals 4*sqrt(3/23)*Pi * (2*sinh(sqrt(23)*Pi/6) + sqrt(2)*sinh(sqrt(23)*Pi/4)) / (2*cosh(sqrt(23)*Pi/3)-1). - Vaclav Kotesovec, Jun 02 2015

Extensions

More digits from Vaclav Kotesovec, Jun 02 2015